PostgreSQL 流式数据处理(聚合、过滤、转换…)系列 - 5
背景
2013年帮朋友做的方案。写了一些列文档来解决当时某个大数据BI平台的异步流式数据处理的功能。
逐步优化,化繁为简。
在业务层面,统计,数据的过滤,数据的清洗,数据的事件触发等。是比较常见的需求。
比如以COUNT就是一个很典型的例子。
在9.2以前全表的count只能通过扫描全表来得到, 即使有pk也必须扫描全表.
9.2版本增加了index only scan的功能, count(*)可以通过仅仅扫描pk就可以得到.
但是如果是一个比较大的表, pk也是很大的, 扫描pk也是个不小的开销.
到了9.6,开始支持并行查询,通过并行,一张1亿的表,COUNT可能只需要几百毫秒。这是一个质的飞跃。(但是还有很多时候用并行并不是最好的)
另外社区也除了一个流式处理的数据库,pipelineDB,但是它的社区版本限制了一个DATABASE只能使用1024个流视图,在编码的地方使用了1BYTE存储CV。
那么回到postgresql数据库本身,有没有办法来优化count全表的操作呢, 如果你的场景真的有必要频繁的count全表, 那么可以尝试一下使用以下方法来优化你的场景.
正文
到目前为止总共写了4篇关于实时和非实时的PostgreSQL count统计优化.
http://blog.163.com/digoal@126/blog/static/163877040201331252945440/
http://blog.163.com/digoal@126/blog/static/16387704020133151402415/
http://blog.163.com/digoal@126/blog/static/16387704020133155179877/
http://blog.163.com/digoal@126/blog/static/16387704020133156636579/
第四篇介绍的是非实时的方法, 场景中的明细表涉及了插入和删除的操作, 设计时需要对明细表增加2个字段(xid和isdel).
本文主要介绍的是只有insert操作的明细表的非实时count统计方法.
其实只要使用第四篇讲的方法已经达到了这个效果, 本文只是单独将只读场景剥离出来, 简化第四篇的函数.
因为明细表只有插入的场景是非常普遍的, 没有必要搞那么复杂.
同样要解决气泡问题, 这里要用到的依然是xid字段. isdel字段就省略了, 因为没有删除操作.
详细的实施过程如下
测试表 :
create table log
(
id serial primary key,
xid int8 default txid_current() not null,
c1 int not null,
c2 int not null,
c3 int not null,
c4 text not null,
crt_time timestamp default now()
);
create index idx_log_1 on log(xid);
存放count()的表, 假设经常需要按log.c1以及log.crt_time分天, 周, 月, 年进行count()
create table log_c1_cnt_day (c1 int, cnt int8, stat_time text, primary key(c1,stat_time));
create table log_c1_cnt_week (c1 int, cnt int8, stat_time text, primary key(c1,stat_time));
create table log_c1_cnt_month (c1 int, cnt int8, stat_time text, primary key(c1,stat_time));
create table log_c1_cnt_year (c1 int, cnt int8, stat_time text, primary key(c1,stat_time));
存放count()的表, 假设经常需要按log.c2, log.c3以及log.crt_time分天, 周, 月, 年进行count()
create table log_c2_c3_cnt_day (c2 int, c3 int, cnt int8, stat_time text, primary key(c2,c3,stat_time));
create table log_c2_c3_cnt_week (c2 int, c3 int, cnt int8, stat_time text, primary key(c2,c3,stat_time));
create table log_c2_c3_cnt_month (c2 int, c3 int, cnt int8, stat_time text, primary key(c2,c3,stat_time));
create table log_c2_c3_cnt_year (c2 int, c3 int, cnt int8, stat_time text, primary key(c2,c3,stat_time));
插入测试数据
insert into log (c1,c2,c3,c4) values (1,1,1,1);
insert into log (c1,c2,c3,c4) values (2,2,2,2);
验证
digoal=# select * from log;
id | xid | c1 | c2 | c3 | c4 | crt_time
----+-----------+----+----+----+----+----------------------------
1 | 480125659 | 1 | 1 | 1 | 1 | 2013-04-21 20:55:45.907713
2 | 480125660 | 2 | 2 | 2 | 2 | 2013-04-21 20:55:46.286933
(2 rows)
创建分析维度注册表, 记录每个明细表每次分析的截止xid, xip. (未来可以精细化, 每个统计维度一条记录. 增加dime 字段. tablename+dime组合pk)
xid 记录统计到哪个xid了, xip记录当前活动事务, 不计入当前统计范畴. 避免气泡问题.
create table log_read
(
tablename name not null,
xid int8 not null,
xip int8[],
xip_res int8[], -- 用于与xid比对的数据. 必须保留所有>=xid的xip信息.
mod_time timestamp,
primary key (tablename)
);
insert into log_read values ('log', 0, null, null, now());
创建串行批量数据分析函数
create or replace function analyze_log(v_limit int) returns void as $$
declare
v_advisory_xact_lock int8 := null; -- 串行处理锁.
v_xid_snap txid_snapshot := null; -- 当前事务状态快照
v_xmin int8 := null; -- 当前事务状态快照中未完成的最小事务
v_xmax int8 := null; -- 当前事务状态快照中未分配的最小事务
v_xip int8[] := null; -- 当前事务状态快照中未完成的事务数组
v_log_read_log_xid int8 := null; -- 上次log的xid分析截止位
v_log_read_log_xid_update int8 := null; -- 更新值, 不能为空
v_log_read_log_xip int8[] := null; -- 上次log_read.xip(tablename=log)
v_log_read_log_xip_do int8[] := null; -- 解析本次log_read.xip(tablename=log) where (xip !@ txid_snapshot)
v_log_read_log_xip_update int8[] := null; -- xip更新值
v_log_read_log_xip_res int8[] := null; -- xip保留值
v_log_read_log_xip_res_update int8[] := null; -- xip保留更新值, 所有大于v_log_read_log_xid_update的元素必须保留.
v_log log[] := null; -- 聚合本次log的分析数组, [末尾调用,false]
v_log_doxip log[] := null; -- 聚合本次分析log数组:
-- where log.xid (@ log_read.xip(tablename=log) and !@ txid_snapshot) , [末尾调用,false]
begin
-- 判断limit
if v_limit <=0 then
raise notice 'please ensure v_limit > 0 .';
return;
end if;
-- 串行处理, 如果不能获得锁则直接退出. 确保v_advisory_xact_lock全局唯一.
v_advisory_xact_lock := 1;
if not pg_try_advisory_xact_lock(v_advisory_xact_lock) then
raise notice 'Another function is calling, this call will exit.';
return;
end if;
-- 生成 xid snapshot 数据.
v_xid_snap := txid_current_snapshot();
v_xmin := txid_snapshot_xmin(v_xid_snap);
v_xmax := txid_snapshot_xmax(v_xid_snap);
select array_agg(t) into v_xip from txid_snapshot_xip(v_xid_snap) g(t);
-- 取v_log_read_log_xid截止值, v_log_read_log_xip数组.
select xid,xip,xip_res into v_log_read_log_xid,v_log_read_log_xip,v_log_read_log_xip_res from log_read where tablename='log';
if not found then
raise notice 'log_read no log entry. please add it in log_read table first.';
return;
end if;
-- 取log1(取非xip中的数据, 隔离log2操作)
-- 取xid临界点
select max(xid) into v_log_read_log_xid_update from (select xid from log where xid > v_log_read_log_xid and xid < v_xmax and xid not in (select * from unnest(v_xip) union all select * from unnest(v_log_read_log_xip_res)) order by xid limit v_limit) t;
if v_log_read_log_xid_update is not null then
raise notice '取log1';
-- 根据临界点,取log数据
select array_agg(log) into v_log from (select log from log where xid > v_log_read_log_xid and xid<=v_log_read_log_xid_update and xid not in (select * from unnest(v_xip) union all select * from unnest(v_log_read_log_xip_res)) order by xid) t;
else
-- 如果没有数据, 更新值不变
v_log_read_log_xid_update := v_log_read_log_xid;
end if;
-- 取log2 (log_xip - v_xip) (取xip中的数据, 隔离log1操作)
-- 生成log_read.xip(tablename=log) do数组(已经完成的事务)
select array_agg(i) into v_log_read_log_xip_do from (select * from unnest(v_log_read_log_xip) i except select * from unnest(v_xip))t where i is not null;
-- 生成log_read.xip(tablename=log) update数组(未完成的事务)
select array_agg(i) into v_log_read_log_xip_update from
( select i from (select * from unnest(v_log_read_log_xip) i union all select * from unnest(v_xip)
except select * from unnest(v_log_read_log_xip_do)) t where i is not null group by i ) t;
-- 生成xip_res更新值
select array_agg(i) into v_log_read_log_xip_res_update from (select * from unnest(v_log_read_log_xip_res) i union select * from unnest(v_log_read_log_xip) union select * from unnest(v_xip))t where i>v_log_read_log_xid_update;
-- 生成log do数组
select array_agg(log) into v_log_doxip from log where xid in (select * from unnest(v_log_read_log_xip_do));
-- 更新log_read(tablename=log)
update log_read set
xip=v_log_read_log_xip_update,
xid=v_log_read_log_xid_update,
xip_res=v_log_read_log_xip_res_update,
mod_time=now()
where tablename='log';
-- raise notice 'log_read.oldxip(log): %.', v_log_read_log_xip;
-- raise notice 'log_read.newxip(log): %.', v_log_read_log_xip_update;
-- raise notice 'log_read.newxipres(log): %.', v_log_read_log_xip_res_update;
-- 分析函数可以另外写, 在此调用.
perform stat_log_c1(v_log);
perform stat_log_c1(v_log_doxip);
return;
end;
$$ language plpgsql;
统计函数stat_log_c1
CREATE OR REPLACE FUNCTION public.stat_log_c1(v_log log[])
RETURNS void
LANGUAGE plpgsql
AS $function$
declare
v_stat_time text;
v_c1 int;
v_cnt int8;
begin
-- 统计log_c1_cnt_day
for v_stat_time, v_c1, v_cnt in select to_char(crt_time, 'yyyymmdd'), c1 , count(*) from (select ((unnest(v_log)::log)).*) t group by to_char(crt_time, 'yyyymmdd'), c1 loop
perform 1 from log_c1_cnt_day where c1=v_c1 and stat_time=v_stat_time;
if not found then
insert into log_c1_cnt_day(c1, cnt, stat_time) values (v_c1, v_cnt, v_stat_time);
else
update log_c1_cnt_day set cnt=cnt+v_cnt where c1=v_c1 and stat_time=v_stat_time;
end if;
end loop;
-- 统计log_c1_cnt_week , .... 略
end;
$function$;
测试, 清理原始数据
truncate log;
truncate log_c1_cnt_day;
update log_read set xid=0, xip=null, xip_res=null;
pgbench脚本, 测试插入场景
cat ins.sql
insert into log (c1,c2,c3,c4) values(round(random()*10),1,2,3);
pgbench
pg92@digoal-PowerEdge-R610-> pgbench -M prepared -f ./ins.sql -r -n -h $PGDATA -U postgres -T 60 -c 8 -j 2
transaction type: Custom query
scaling factor: 1
query mode: prepared
number of clients: 8
number of threads: 2
duration: 60 s
number of transactions actually processed: 2887271
tps = 48121.007692 (including connections establishing)
tps = 48131.903512 (excluding connections establishing)
statement latencies in milliseconds:
0.164881 insert into log (c1,c2,c3,c4) values(round(random()*10),1,2,3);
压力测试的同时执行analyze_log. 确保pgbench同时执行analyze_log.
pg92@digoal-PowerEdge-R610-> cat analyze.sh
#!/bin/bash
for ((i=0;i<100;i++))
do
psql -c "select * from analyze_log(1);"
psql -c "select * from analyze_log(1000000);"
done
调用analyze.sh
验证数据是否准确
digoal=# select c1,count(*),to_char(crt_time,'yyyymmdd') from log group by c1,to_char(crt_time,'yyyymmdd') order by c1;
c1 | count | to_char
----+--------+----------
0 | 140071 | 20130421
1 | 282303 | 20130421
2 | 281499 | 20130421
3 | 281339 | 20130421
4 | 282008 | 20130421
5 | 281871 | 20130421
6 | 282954 | 20130421
7 | 281855 | 20130421
8 | 281560 | 20130421
9 | 281516 | 20130421
10 | 140456 | 20130421
(11 rows)
digoal=# select * from log_c1_cnt_day where cnt<>0 order by c1;
c1 | cnt | stat_time
----+--------+-----------
0 | 140071 | 20130421
1 | 282303 | 20130421
2 | 281499 | 20130421
3 | 281339 | 20130421
4 | 282008 | 20130421
5 | 281871 | 20130421
6 | 282954 | 20130421
7 | 281855 | 20130421
8 | 281560 | 20130421
9 | 281516 | 20130421
10 | 140456 | 20130421
(11 rows)
测试多SQL, 带回滚场景.
pgbench脚本
cat ins.sql
begin;
insert into log (c1,c2,c3,c4) values(round(random()*10),1,2,3);
insert into log (c1,c2,c3,c4) values(round(random()*10),1,2,3);
insert into log (c1,c2,c3,c4) values(round(random()*10),1,2,3);
insert into log (c1,c2,c3,c4) values(round(random()*10),1,2,3);
insert into log (c1,c2,c3,c4) values(round(random()*10),1,2,3);
insert into log (c1,c2,c3,c4) values(round(random()*10),1,2,3);
insert into log (c1,c2,c3,c4) values(round(random()*10),1,2,3);
insert into log (c1,c2,c3,c4) values(round(random()*10),1,2,3);
insert into log (c1,c2,c3,c4) values(round(random()*10),1,2,3);
insert into log (c1,c2,c3,c4) values(round(random()*10),1,2,3);
insert into log (c1,c2,c3,c4) values(round(random()*10),1,2,3);
insert into log (c1,c2,c3,c4) values(round(random()*10),1,2,3);
insert into log (c1,c2,c3,c4) values(round(random()*10),1,2,3);
insert into log (c1,c2,c3,c4) values(round(random()*10),1,2,3);
insert into log (c1,c2,c3,c4) values(round(random()*10),1,2,3);
insert into log (c1,c2,c3,c4) values(round(random()*10),1,2,3);
insert into log (c1,c2,c3,c4) values(round(random()*10),1,2,3);
insert into log (c1,c2,c3,c4) values(round(random()*10),1,2,3);
end;
begin;
insert into log (c1,c2,c3,c4) values(round(random()*10),1,2,3);
insert into log (c1,c2,c3,c4) values(round(random()*10),1,2,3);
insert into log (c1,c2,c3,c4) values(round(random()*10),1,2,3);
insert into log (c1,c2,c3,c4) values(round(random()*10),1,2,3);
insert into log (c1,c2,c3,c4) values(round(random()*10),1,2,3);
insert into log (c1,c2,c3,c4) values(round(random()*10),1,2,3);
insert into log (c1,c2,c3,c4) values(round(random()*10),1,2,3);
insert into log (c1,c2,c3,c4) values(round(random()*10),1,2,3);
insert into log (c1,c2,c3,c4) values(round(random()*10),1,2,3);
rollback;
insert into log (c1,c2,c3,c4) values(round(random()*10),1,2,3);
insert into log (c1,c2,c3,c4) values(round(random()*10),1,2,3);
pgbench
pg92@digoal-PowerEdge-R610-> pgbench -M prepared -f ./ins.sql -r -n -h $PGDATA -U postgres -T 60 -c 8 -j 2
transaction type: Custom query
scaling factor: 1
query mode: prepared
number of clients: 8
number of threads: 2
duration: 60 s
number of transactions actually processed: 100862
tps = 1680.570420 (including connections establishing)
tps = 1680.946330 (excluding connections establishing)
statement latencies in milliseconds:
............略
压力测试的同时执行analyze_log. 确保pgbench同时执行analyze_log.
pg92@digoal-PowerEdge-R610-> cat analyze.sh
#!/bin/bash
for ((i=0;i<100;i++))
do
psql -c "select * from analyze_log(1);"
psql -c "select * from analyze_log(1000000);"
done
调用analyze.sh
验证数据是否准确
digoal=# select c1,count(*),to_char(crt_time,'yyyymmdd') from log group by c1,to_char(crt_time,'yyyymmdd') order by c1;
c1 | count | to_char
----+--------+----------
0 | 245002 | 20130426
1 | 491034 | 20130426
2 | 489717 | 20130426
3 | 490628 | 20130426
4 | 490064 | 20130426
5 | 490393 | 20130426
6 | 490893 | 20130426
7 | 490081 | 20130426
8 | 490180 | 20130426
9 | 490659 | 20130426
10 | 245860 | 20130426
(11 rows)
digoal=# select * from log_c1_cnt_day where cnt<>0 order by c1;
c1 | cnt | stat_time
----+--------+-----------
0 | 245002 | 20130426
1 | 491034 | 20130426
2 | 489717 | 20130426
3 | 490628 | 20130426
4 | 490064 | 20130426
5 | 490393 | 20130426
6 | 490893 | 20130426
7 | 490081 | 20130426
8 | 490180 | 20130426
9 | 490659 | 20130426
10 | 245860 | 20130426
(11 rows)
特别注意
由于本例采用了PostgreSQL系统xid来解决气泡问题, 所以特别需要注意以下问题 :
xid的问题, 当使用pg_resetxlog修改xid时(如果xid改小)将打破使用该方法的统计. 所以安全的做法是xid改大可以, 改小不行.
当使用pg_dump导出明细数据到另一个库后, 记得先使用pg_resetxlog将新集群的xid调整到大于明细表的max(xid)
为方便大家查询, 汇总PostgreSQL实时和非实时数据统计的案例分析文章系列 - 如下 :
1. http://blog.163.com/digoal@126/blog/static/163877040201331252945440/
2. http://blog.163.com/digoal@126/blog/static/16387704020133151402415/
3. http://blog.163.com/digoal@126/blog/static/16387704020133155179877/
4. http://blog.163.com/digoal@126/blog/static/16387704020133156636579/
5. http://blog.163.com/digoal@126/blog/static/16387704020133218305242/
6. http://blog.163.com/digoal@126/blog/static/16387704020133224161563/
7. http://blog.163.com/digoal@126/blog/static/16387704020133271134563/
8. http://blog.163.com/digoal@126/blog/static/16387704020134311144755/