PostgreSQL 流式数据处理(聚合、过滤、转换…)系列 - 4
背景
2013年帮朋友做的方案。写了一些列文档来解决当时某个大数据BI平台的异步流式数据处理的功能。
逐步优化,化繁为简。
在业务层面,统计,数据的过滤,数据的清洗,数据的事件触发等。是比较常见的需求。
比如以COUNT就是一个很典型的例子。
在9.2以前全表的count只能通过扫描全表来得到, 即使有pk也必须扫描全表.
9.2版本增加了index only scan的功能, count(*)可以通过仅仅扫描pk就可以得到.
但是如果是一个比较大的表, pk也是很大的, 扫描pk也是个不小的开销.
到了9.6,开始支持并行查询,通过并行,一张1亿的表,COUNT可能只需要几百毫秒。这是一个质的飞跃。(但是还有很多时候用并行并不是最好的)
另外社区也除了一个流式处理的数据库,pipelineDB,但是它的社区版本限制了一个DATABASE只能使用1024个流视图,在编码的地方使用了1BYTE存储CV。
那么回到postgresql数据库本身,有没有办法来优化count全表的操作呢, 如果你的场景真的有必要频繁的count全表, 那么可以尝试一下使用以下方法来优化你的场景.
正文
前面三篇blog针对PostgreSQL的coung(*)如何优化做了比较详细的分析和测试, 如下 :
http://blog.163.com/digoal@126/blog/static/163877040201331252945440/
http://blog.163.com/digoal@126/blog/static/16387704020133151402415/
http://blog.163.com/digoal@126/blog/static/16387704020133155179877/
但是都是实时的方式进行的优化, 特别是第三篇, 对于按列进行统计分析的场景, 因为统计维度较多, 实时的更新count(*)会带来较大的插入性能瓶颈. 例如有8个维度表的时候, 单步插入的性能会下降到insert = 6500 qps左右.
这个时候, 你可能需要非实时批量统计. 也就是异步的更新维度表的统计数据.
例如每100条数据更新一次, 或者每1秒更新一次. 来减少维度表的更新频率. 降低数据库, 但是统计数据是非实时的, 这点必须清楚.
如果需要查询实时的count还需要查询未计入统计表的明细表数据.
异步处理会遇到以下问题
1. 气泡问题, (有解决方法,不要使用界限,使用order by limit,或者直接使用limit).
例如这样,是不是很帅呢(本文未涉及)? (with tmp as (delete from tbl limit 10000 returning *) insert into xxx select x from tmp group by x; )
自增长字段作为分段统计的分隔字段安全吗?
如果明细表的插入是当线程的, 回答是安全的. 但是如果明细表是并行插入的, 那么就不安全了.
举个例子(这里以时间为分隔字段) :
t1:2013-03-01 11:01:00 SESSION A :
begin;
insert into log(id,info,crt_time) values (1,'test1',clock_timestamp()); -- 假设clock_timestamp()='2013-03-01 11:01:00'
t2:2013-03-01 11:01:02 SESSION B :
begin;
insert into log(id,info,crt_time) values (2,'test2',clock_timestamp()); -- 假设clock_timestamp()='2013-03-01 11:01:02'
commit;
t3:2013-03-01 11:01:03 统计操作1 : (由于此时a未提交,所以取不到a的数据)
select * from log where crt_time >='2013-03-01 11:01:00' and crt_time<'2013-03-01 11:01:02';
然后对这批数据进行统计分析, 合并统计数据.
t4:2013-03-01 11:01:04 SESSION A :
commit;
t5:2013-03-01 11:01:05 统计操作2 :
select * from log where crt_time >='2013-03-01 11:01:02' and crt_time<'?';
此时进行统计显然会漏掉SESSION A插入明细表的数据.
使用序列同样会有这种问题.
要避免以上问题, 统计数据分段截止改一个条件即可, 以上是截至到明细数据的最大值. 改为截至小于正在操作明细表的所有未提交的事务.
需要结合事务ID来操作, 因为事务id是自增长分配的同时又具备了mvcc的含义. 用来做分隔字段是可以的.
方法一
分析小于txid_snapshot_xmin的记录, 因为小于xmin的事务都已经提交或者回滚了. 可以规避气泡问题.
使用这种方法要注意长事务的问题, 长事务可能会带来巨大的分析延迟. (因为xmin可能远小于明细表当前最大的已提交事务号.)
使用这种方法以xmin为过滤条件时, 还要注意分辨锁级别, 只有insert, delete, alter, truncate, drop的锁需要过滤, 其他的不应该过滤. 以便减少延迟.
方法二
由于方法1的缺陷, 当数据库中存在较长事务时, 这种分析可能存在大的延迟.
所以采用另一种方法, 分析小于txid_snapshot_xmax的明细记录, 同时记录下txid_snapshot_xip() 或者txid_current_snapshot()的xip值. 这里的xip包含了未提交或未回滚的prepare transaction xid. 所以就不需要再去查找pg_prepared_xacts了.
为了得到一致的xmin,xmax,xip值, 最好都从txid_current_snapshot()取.
具体的流程如下 :
begin;
select agg(txid_current_snapshot) into v_xmin, v_xmax, v_xip;
-- 处理 select * from log where txid < v_xmax and txid>=log_read_last_txid;
-- 处理 select * from log_del where txid < v_xmax and txid>=log_read_last_txid;
-- 处理 select * from log where txid in log_xip and not in v_xip;
-- 处理 select * from log_del where txid in log_xip and not in v_xip;
-- 记录处理截止点log_read_last_txid;
-- 更新log_xip
end;
本例将采用方法二的解决办法.
2. 并行处理的问题, 如何保证并行安全, 高效.
本例不涉及并行处理, 所以等下一篇BLOG再来解决这个问题. 感兴趣的朋友可以关注一下.
3. 如何减少取数次数(扫描次数).
多个统计维度使用同一份数据. 这个本例已经解决.
4. 明细表delete带来的问题. 可能造成被删除的数据无法被统计.
异步处理的解决办法
1. 加一个字段用来标识(记录是否删除). 应用程序查询数据是需要过滤删除数据.
2. 增加del明细表.
本例已经解决.
详细的实施过程
测试表 :
create table log
(
id serial primary key,
xid int8 default txid_current() not null,
isdel boolean default false not null,
c1 int not null,
c2 int not null,
c3 int not null,
c4 text not null,
crt_time timestamp default now()
);
create index idx_log_1 on log(xid);
存放count()的表, 假设经常需要按log.c1以及log.crt_time分天, 周, 月, 年进行count()
create table log_c1_cnt_day (c1 int, cnt int8, stat_time text, primary key(c1,stat_time));
create table log_c1_cnt_week (c1 int, cnt int8, stat_time text, primary key(c1,stat_time));
create table log_c1_cnt_month (c1 int, cnt int8, stat_time text, primary key(c1,stat_time));
create table log_c1_cnt_year (c1 int, cnt int8, stat_time text, primary key(c1,stat_time));
存放count()的表, 假设经常需要按log.c2, log.c3以及log.crt_time分天, 周, 月, 年进行count()
create table log_c2_c3_cnt_day (c2 int, c3 int, cnt int8, stat_time text, primary key(c2,c3,stat_time));
create table log_c2_c3_cnt_week (c2 int, c3 int, cnt int8, stat_time text, primary key(c2,c3,stat_time));
create table log_c2_c3_cnt_month (c2 int, c3 int, cnt int8, stat_time text, primary key(c2,c3,stat_time));
create table log_c2_c3_cnt_year (c2 int, c3 int, cnt int8, stat_time text, primary key(c2,c3,stat_time));
存放删除记录的表,
create table log_del (xid int8 default txid_current() not null, log_rec log not null);
create index idx_log_del_1 on log_del(xid);
创建删除触发器函数, 更新log.isdel标记, 不删除log表. 同时插入log_del.
create or replace function tg_log_del() returns trigger as $$
declare
begin
-- 避免重复删除
if not OLD.isdel then
update log set isdel=true where id=OLD.id;
insert into log_del(log_rec) values (OLD);
return null;
else
-- 如果已经删除, 则直接返回空, 不处理.
return null;
end if;
end;
$$ language plpgsql;
在log上创建before删除触发器, 注意是before. 必须的.
create trigger tg1 before delete on log for each row execute procedure tg_log_del();
插入测试数据
insert into log (c1,c2,c3,c4) values (1,1,1,1);
insert into log (c1,c2,c3,c4) values (2,2,2,2);
验证
digoal=# select * from log;
id | xid | isdel | c1 | c2 | c3 | c4 | crt_time
----+-----------+-------+----+----+----+----+----------------------------
2 | 444403112 | f | 2 | 2 | 2 | 2 | 2013-04-19 11:47:17.140624
1 | 444403111 | f | 1 | 1 | 1 | 1 | 2013-04-19 11:47:16.778672
(2 rows)
删除验证
digoal=# delete from log where id=1;
DELETE 0
digoal=# select * from log_del;
xid | log_rec
-----------+------------------------------------------------------
444403113 | (1,444403111,f,1,1,1,1,"2013-04-19 11:47:16.778672")
(1 row)
digoal=# select * from log;
id | xid | isdel | c1 | c2 | c3 | c4 | crt_time
----+-----------+-------+----+----+----+----+----------------------------
2 | 444403112 | f | 2 | 2 | 2 | 2 | 2013-04-19 11:47:17.140624
1 | 444403111 | t | 1 | 1 | 1 | 1 | 2013-04-19 11:47:16.778672
(2 rows)
digoal=# select xid,(log_rec::log).* from log_del ;
xid | id | xid | isdel | c1 | c2 | c3 | c4 | crt_time
-----------+----+-----------+-------+----+----+----+----+----------------------------
444403113 | 1 | 444403111 | f | 1 | 1 | 1 | 1 | 2013-04-19 11:47:16.778672
(1 row)
创建分析维度注册表, 记录每个明细表每次分析的截止xid, xip. (未来可以精细化, 每个统计维度一条记录. 增加dime 字段. tablename+dime组合pk)
xid 记录统计到哪个xid了, xip记录当前活动事务, 不计入当前统计范畴. 避免气泡问题.
create table log_read
(
tablename name not null,
xid int8 not null,
xip int8[],
xip_res int8[], -- 用于与xid比对的数据. 必须保留所有>=xid的xip信息.
mod_time timestamp,
primary key (tablename)
);
insert into log_read values ('log', 0, null, null, now());
insert into log_read values ('log_del', 0, null, null, now());
创建串行批量数据分析函数
注意xid边界的选取. 如果单事务插入的语句过多, 可能造成内存溢出.
生产环境中也尽量避免单事务过大, 控制在10万条以内一个事务比较好.
create or replace function analyze_log(v_limit int) returns void as $$
declare
v_advisory_xact_lock int8 := null; -- 串行处理锁.
v_xid_snap txid_snapshot := null; -- 当前事务状态快照
v_xmin int8 := null; -- 当前事务状态快照中未完成的最小事务
v_xmax int8 := null; -- 当前事务状态快照中未分配的最小事务
v_xip int8[] := null; -- 当前事务状态快照中未完成的事务数组
v_log_read_log_xid int8 := null; -- 上次log的xid分析截止位
v_log_read_log_del_xid int8 := null; -- 上次log_del的xid分析截止位
v_log_read_log_xid_update int8 := null; -- 更新值, 不能为空
v_log_read_log_del_xid_update int8 := null; -- 更新值, 不能为空
v_log_read_log_xip int8[] := null; -- 上次log_read.xip(tablename=log)
v_log_read_log_xip_do int8[] := null; -- 解析本次log_read.xip(tablename=log) where (xip !@ txid_snapshot)
v_log_read_log_xip_update int8[] := null; -- xip更新值
v_log_read_log_xip_res int8[] := null; -- xip保留值
v_log_read_log_xip_res_update int8[] := null; -- xip保留更新值, 所有大于v_log_read_log_xid_update的元素必须保留.
v_log_read_log_del_xip int8[] := null; -- 上次log_read.xip(tablename=log_del)
v_log_read_log_del_xip_do int8[] := null; -- 解析本次log_read.xip(tablename=log_del) where (xip !@ txid_snapshot)
v_log_read_log_del_xip_update int8[] := null; -- xip更新值
v_log_read_log_del_xip_res int8[] := null; -- xip保留值
v_log_read_log_del_xip_res_update int8[] := null; -- xip保留更新值, 所有大于v_log_read_log_del_xid_update的元素必须保留.
v_log log[] := null; -- 聚合本次log的分析数组, [末尾调用,false]
v_log_doxip log[] := null; -- 聚合本次分析log数组:
-- where log.xid (@ log_read.xip(tablename=log) and !@ txid_snapshot) , [末尾调用,false]
v_log_del_log_rec log[] := null; -- 聚合本次分析log_del.log_rec数组:
-- where log_del.xid ( > log_read.xid(tablename=log_del) ) order by log_del.xid ), [末尾调用,true]
v_log_del_log_rec_doxip log[] := null; -- 聚合本次分析log_del.log_rec数组:
-- where log_del.xid (@ log_read.xip(tablename=log_del) and !@ txid_snapshot) , [末尾调用,true]
begin
-- 判断limit
if v_limit <=0 then
raise notice 'please ensure v_limit > 0 .';
return;
end if;
-- 串行处理, 如果不能获得锁则直接退出. 确保v_advisory_xact_lock全局唯一.
v_advisory_xact_lock := 1;
if not pg_try_advisory_xact_lock(v_advisory_xact_lock) then
raise notice 'Another function is calling, this call will exit.';
return;
end if;
-- 生成 xid snapshot 数据.
v_xid_snap := txid_current_snapshot();
v_xmin := txid_snapshot_xmin(v_xid_snap);
v_xmax := txid_snapshot_xmax(v_xid_snap);
select array_agg(t) into v_xip from txid_snapshot_xip(v_xid_snap) g(t);
-- 取v_log_read_log_xid截止值, v_log_read_log_xip数组.
select xid,xip,xip_res into v_log_read_log_xid,v_log_read_log_xip,v_log_read_log_xip_res from log_read where tablename='log';
if not found then
raise notice 'log_read no log entry. please add it in log_read table first.';
return;
end if;
-- 取v_log_read_log_del_xid截止值, v_log_read_log_del_xip数组.
select xid,xip,xip_res into v_log_read_log_del_xid,v_log_read_log_del_xip,v_log_read_log_del_xip_res from log_read where tablename='log_del';
if not found then
raise notice 'log_read no log_del entry. please add it in log_read table first.';
return;
end if;
-- 取log1(取非xip中的数据, 隔离log2操作)
-- 取xid临界点
select max(xid) into v_log_read_log_xid_update from (select xid from log where xid > v_log_read_log_xid and xid < v_xmax and xid not in (select * from unnest(v_xip) union all select * from unnest(v_log_read_log_xip_res)) order by xid limit v_limit) t;
if v_log_read_log_xid_update is not null then
raise notice '取log1';
-- 根据临界点,取log数据
select array_agg(log) into v_log from (select log from log where xid > v_log_read_log_xid and xid<=v_log_read_log_xid_update and xid not in (select * from unnest(v_xip) union all select * from unnest(v_log_read_log_xip_res)) order by xid) t;
else
-- 如果没有数据, 更新值不变
v_log_read_log_xid_update := v_log_read_log_xid;
end if;
-- 取log_del1(取非xip中的数据, 隔离log_del2操作)
-- 取xid临界点
select max(xid) into v_log_read_log_del_xid_update from (select xid from log_del where xid > v_log_read_log_del_xid and xid < v_xmax and xid not in (select * from unnest(v_xip) union all select * from unnest(v_log_read_log_del_xip_res)) order by xid limit v_limit) t;
if v_log_read_log_del_xid_update is not null then
raise notice '取log_del1';
-- 根据临界点,取log_del.log_rec数据
select array_agg(log_rec) into v_log_del_log_rec from (select (log_del).log_rec as log_rec from log_del where xid > v_log_read_log_del_xid and xid<=v_log_read_log_del_xid_update and xid not in (select * from unnest(v_xip) union all select * from unnest(v_log_read_log_del_xip_res)) order by xid) t;
else
-- 如果没有数据, 更新值不变
v_log_read_log_del_xid_update := v_log_read_log_del_xid;
end if;
-- 取log2 (log_xip - v_xip) (取xip中的数据, 隔离log1操作)
-- 生成log_read.xip(tablename=log) do数组(已经完成的事务)
select array_agg(i) into v_log_read_log_xip_do from (select * from unnest(v_log_read_log_xip) i except select * from unnest(v_xip))t where i is not null;
-- 生成log_read.xip(tablename=log) update数组(未完成的事务)
select array_agg(i) into v_log_read_log_xip_update from
( select i from (select * from unnest(v_log_read_log_xip) i union all select * from unnest(v_xip)
except select * from unnest(v_log_read_log_xip_do)) t where i is not null group by i ) t;
-- 生成xip_res更新值
select array_agg(i) into v_log_read_log_xip_res_update from (select * from unnest(v_log_read_log_xip_res) i union select * from unnest(v_log_read_log_xip) union select * from unnest(v_xip))t where i>v_log_read_log_xid_update;
-- 生成log do数组
select array_agg(log) into v_log_doxip from log where xid in (select * from unnest(v_log_read_log_xip_do));
-- 取log_del2 (log_xip - v_xip) (取xip中的数据, 隔离log_del1操作)
-- 生成log_read.xip(tablename=log_del) do数组(已经完成的事务)
select array_agg(i) into v_log_read_log_del_xip_do from (select * from unnest(v_log_read_log_del_xip) i except select * from unnest(v_xip))t where i is not null;
-- 生成log_read.xip(tablename=log_del) update数组(未完成的事务)
select array_agg(i) into v_log_read_log_del_xip_update from
( select i from (select * from unnest(v_log_read_log_del_xip) i union all select * from unnest(v_xip)
except select * from unnest(v_log_read_log_del_xip_do)) t where i is not null group by i ) t;
-- 生成xip_res更新值
select array_agg(i) into v_log_read_log_del_xip_res_update from (select * from unnest(v_log_read_log_del_xip_res) i union select * from unnest(v_log_read_log_del_xip) union select * from unnest(v_xip)) t where i>v_log_read_log_del_xid_update;
-- 生成log_del.log_rec do数组
select array_agg(log_rec) into v_log_del_log_rec_doxip from log_del where xid in (select * from unnest(v_log_read_log_del_xip_do));
-- 更新log_read(tablename=log)
update log_read set
xip=v_log_read_log_xip_update,
xid=v_log_read_log_xid_update,
xip_res=v_log_read_log_xip_res_update,
mod_time=now()
where tablename='log';
-- DEBUG
-- raise notice 'log_read.oldxip(log): %.', v_log_read_log_xip;
-- raise notice 'log_read.newxip(log): %.', v_log_read_log_xip_update;
-- raise notice 'log_read.newxipres(log): %.', v_log_read_log_xip_res_update;
-- 更新log_read(tablename=log_del)
update log_read set
xip=v_log_read_log_del_xip_update,
xid=v_log_read_log_del_xid_update,
xip_res=v_log_read_log_del_xip_res_update,
mod_time=now()
where tablename='log_del';
-- DEBUG
-- raise notice 'log_read.oldxip(log_del): %.', v_log_read_log_del_xip;
-- raise notice 'log_read.newxip(log_del): %.', v_log_read_log_del_xip_update;
-- raise notice 'log_read.newxipres(log_del): %.', v_log_read_log_del_xip_res_update;
-- 分析函数可以另外写, 在此调用.
perform stat_log_c1(v_log, false);
perform stat_log_c1(v_log_doxip, false);
perform stat_log_c1(v_log_del_log_rec, true);
perform stat_log_c1(v_log_del_log_rec_doxip, true);
return;
end;
$$ language plpgsql;
统计函数stat_log_c1
CREATE OR REPLACE FUNCTION public.stat_log_c1(v_log log[], isdel boolean DEFAULT false)
RETURNS void
LANGUAGE plpgsql
AS $function$
declare
v_stat_time text;
v_c1 int;
v_cnt int8;
begin
-- 统计log_c1_cnt_day
for v_stat_time, v_c1, v_cnt in select to_char(crt_time, 'yyyymmdd'), c1 , count(*) from (select ((unnest(v_log)::log)).*) t group by to_char(crt_time, 'yyyymmdd'), c1 loop
perform 1 from log_c1_cnt_day where c1=v_c1 and stat_time=v_stat_time;
if not found then
if isdel then
insert into log_c1_cnt_day(c1, cnt, stat_time) values (v_c1, -v_cnt, v_stat_time);
else
insert into log_c1_cnt_day(c1, cnt, stat_time) values (v_c1, v_cnt, v_stat_time);
end if;
else
if isdel then
update log_c1_cnt_day set cnt=cnt-v_cnt where c1=v_c1 and stat_time=v_stat_time;
else
update log_c1_cnt_day set cnt=cnt+v_cnt where c1=v_c1 and stat_time=v_stat_time;
end if;
end if;
end loop;
-- 统计log_c1_cnt_week , .... 略
end;
$function$;
测试, 清理原始数据
truncate log;
truncate log_del;
truncate log_c1_cnt_day;
update log_read set xid=0, xip=null, xip_res=null;
pgbench脚本, 测试插入场景
cat ins.sql
insert into log (c1,c2,c3,c4) values(round(random()*10),1,2,3);
pgbench
pg92@digoal-PowerEdge-R610-> pgbench -M prepared -f ./ins.sql -r -n -h $PGDATA -U postgres -T 60 -c 8 -j 2
transaction type: Custom query
scaling factor: 1
query mode: prepared
number of clients: 8
number of threads: 2
duration: 60 s
number of transactions actually processed: 2679540
tps = 44658.871978 (including connections establishing)
tps = 44668.857300 (excluding connections establishing)
statement latencies in milliseconds:
0.177730 insert into log (c1,c2,c3,c4) values(round(random()*10),1,2,3);
压力测试的同时执行analyze_log. 确保pgbench同时执行analyze_log.
pg92@digoal-PowerEdge-R610-> cat analyze.sh
#!/bin/bash
for ((i=0;i<100;i++))
do
psql -c "select * from analyze_log(1);"
psql -c "select * from analyze_log(1000000);"
done
验证数据是否准确
digoal=# select c1,count(*),to_char(crt_time,'yyyymmdd') from log where not isdel group by c1,to_char(crt_time,'yyyymmdd') order by c1;
c1 | count | to_char
----+---------+----------
0 | 643764 | 20130426
1 | 1291330 | 20130426
2 | 1289282 | 20130426
3 | 1289503 | 20130426
4 | 1290164 | 20130426
5 | 1290816 | 20130426
6 | 1290268 | 20130426
7 | 1288713 | 20130426
8 | 1289126 | 20130426
9 | 1288201 | 20130426
10 | 645811 | 20130426
(11 rows)
digoal=# select * from log_c1_cnt_day where cnt<>0 order by c1;
c1 | cnt | stat_time
----+---------+-----------
0 | 643764 | 20130426
1 | 1291330 | 20130426
2 | 1289282 | 20130426
3 | 1289503 | 20130426
4 | 1290164 | 20130426
5 | 1290816 | 20130426
6 | 1290268 | 20130426
7 | 1288713 | 20130426
8 | 1289126 | 20130426
9 | 1288201 | 20130426
10 | 645811 | 20130426
(11 rows)
测试insert, delete混合场景
postgres=# select min(id),max(id) from log;
min | max
-----------+-----------
109027255 | 121036868
(1 row)
pgbench脚本, 测试包含delete, rollback的场景, 同时测试单事务包含多条SQL的场景.
pg92@digoal-PowerEdge-R610-> cat ins.sql
\setrandom id 109027255 131036868
begin;
insert into log (c1,c2,c3,c4) values(round(random()*10),1,2,3);
insert into log (c1,c2,c3,c4) values(round(random()*10),1,2,3);
insert into log (c1,c2,c3,c4) values(round(random()*10),1,2,3);
insert into log (c1,c2,c3,c4) values(round(random()*10),1,2,3);
insert into log (c1,c2,c3,c4) values(round(random()*10),1,2,3);
insert into log (c1,c2,c3,c4) values(round(random()*10),1,2,3);
insert into log (c1,c2,c3,c4) values(round(random()*10),1,2,3);
insert into log (c1,c2,c3,c4) values(round(random()*10),1,2,3);
insert into log (c1,c2,c3,c4) values(round(random()*10),1,2,3);
insert into log (c1,c2,c3,c4) values(round(random()*10),1,2,3);
insert into log (c1,c2,c3,c4) values(round(random()*10),1,2,3);
insert into log (c1,c2,c3,c4) values(round(random()*10),1,2,3);
insert into log (c1,c2,c3,c4) values(round(random()*10),1,2,3);
insert into log (c1,c2,c3,c4) values(round(random()*10),1,2,3);
insert into log (c1,c2,c3,c4) values(round(random()*10),1,2,3);
insert into log (c1,c2,c3,c4) values(round(random()*10),1,2,3);
insert into log (c1,c2,c3,c4) values(round(random()*10),1,2,3);
insert into log (c1,c2,c3,c4) values(round(random()*10),1,2,3);
insert into log (c1,c2,c3,c4) values(round(random()*10),1,2,3);
insert into log (c1,c2,c3,c4) values(round(random()*10),1,2,3);
insert into log (c1,c2,c3,c4) values(round(random()*10),1,2,3);
insert into log (c1,c2,c3,c4) values(round(random()*10),1,2,3);
insert into log (c1,c2,c3,c4) values(round(random()*10),1,2,3);
insert into log (c1,c2,c3,c4) values(round(random()*10),1,2,3);
insert into log (c1,c2,c3,c4) values(round(random()*10),1,2,3);
insert into log (c1,c2,c3,c4) values(round(random()*10),1,2,3);
insert into log (c1,c2,c3,c4) values(round(random()*10),1,2,3);
insert into log (c1,c2,c3,c4) values(round(random()*10),1,2,3);
insert into log (c1,c2,c3,c4) values(round(random()*10),1,2,3);
insert into log (c1,c2,c3,c4) values(round(random()*10),1,2,3);
insert into log (c1,c2,c3,c4) values(round(random()*10),1,2,3);
insert into log (c1,c2,c3,c4) values(round(random()*10),1,2,3);
insert into log (c1,c2,c3,c4) values(round(random()*10),1,2,3);
insert into log (c1,c2,c3,c4) values(round(random()*10),1,2,3);
insert into log (c1,c2,c3,c4) values(round(random()*10),1,2,3);
insert into log (c1,c2,c3,c4) values(round(random()*10),1,2,3);
insert into log (c1,c2,c3,c4) values(round(random()*10),1,2,3);
insert into log (c1,c2,c3,c4) values(round(random()*10),1,2,3);
insert into log (c1,c2,c3,c4) values(round(random()*10),1,2,3);
insert into log (c1,c2,c3,c4) values(round(random()*10),1,2,3);
insert into log (c1,c2,c3,c4) values(round(random()*10),1,2,3);
insert into log (c1,c2,c3,c4) values(round(random()*10),1,2,3);
insert into log (c1,c2,c3,c4) values(round(random()*10),1,2,3);
insert into log (c1,c2,c3,c4) values(round(random()*10),1,2,3);
insert into log (c1,c2,c3,c4) values(round(random()*10),1,2,3);
insert into log (c1,c2,c3,c4) values(round(random()*10),1,2,3);
insert into log (c1,c2,c3,c4) values(round(random()*10),1,2,3);
insert into log (c1,c2,c3,c4) values(round(random()*10),1,2,3);
insert into log (c1,c2,c3,c4) values(round(random()*10),1,2,3);
insert into log (c1,c2,c3,c4) values(round(random()*10),1,2,3);
insert into log (c1,c2,c3,c4) values(round(random()*10),1,2,3);
insert into log (c1,c2,c3,c4) values(round(random()*10),1,2,3);
insert into log (c1,c2,c3,c4) values(round(random()*10),1,2,3);
insert into log (c1,c2,c3,c4) values(round(random()*10),1,2,3);
insert into log (c1,c2,c3,c4) values(round(random()*10),1,2,3);
insert into log (c1,c2,c3,c4) values(round(random()*10),1,2,3);
insert into log (c1,c2,c3,c4) values(round(random()*10),1,2,3);
insert into log (c1,c2,c3,c4) values(round(random()*10),1,2,3);
insert into log (c1,c2,c3,c4) values(round(random()*10),1,2,3);
insert into log (c1,c2,c3,c4) values(round(random()*10),1,2,3);
insert into log (c1,c2,c3,c4) values(round(random()*10),1,2,3);
insert into log (c1,c2,c3,c4) values(round(random()*10),1,2,3);
insert into log (c1,c2,c3,c4) values(round(random()*10),1,2,3);
insert into log (c1,c2,c3,c4) values(round(random()*10),1,2,3);
insert into log (c1,c2,c3,c4) values(round(random()*10),1,2,3);
insert into log (c1,c2,c3,c4) values(round(random()*10),1,2,3);
insert into log (c1,c2,c3,c4) values(round(random()*10),1,2,3);
insert into log (c1,c2,c3,c4) values(round(random()*10),1,2,3);
insert into log (c1,c2,c3,c4) values(round(random()*10),1,2,3);
insert into log (c1,c2,c3,c4) values(round(random()*10),1,2,3);
insert into log (c1,c2,c3,c4) values(round(random()*10),1,2,3);
insert into log (c1,c2,c3,c4) values(round(random()*10),1,2,3);
insert into log (c1,c2,c3,c4) values(round(random()*10),1,2,3);
insert into log (c1,c2,c3,c4) values(round(random()*10),1,2,3);
insert into log (c1,c2,c3,c4) values(round(random()*10),1,2,3);
insert into log (c1,c2,c3,c4) values(round(random()*10),1,2,3);
insert into log (c1,c2,c3,c4) values(round(random()*10),1,2,3);
insert into log (c1,c2,c3,c4) values(round(random()*10),1,2,3);
end;
begin;
insert into log (c1,c2,c3,c4) values(round(random()*10),1,2,3);
insert into log (c1,c2,c3,c4) values(round(random()*10),1,2,3);
insert into log (c1,c2,c3,c4) values(round(random()*10),1,2,3);
insert into log (c1,c2,c3,c4) values(round(random()*10),1,2,3);
insert into log (c1,c2,c3,c4) values(round(random()*10),1,2,3);
insert into log (c1,c2,c3,c4) values(round(random()*10),1,2,3);
insert into log (c1,c2,c3,c4) values(round(random()*10),1,2,3);
insert into log (c1,c2,c3,c4) values(round(random()*10),1,2,3);
insert into log (c1,c2,c3,c4) values(round(random()*10),1,2,3);
insert into log (c1,c2,c3,c4) values(round(random()*10),1,2,3);
rollback;
begin;
delete from log where id=:id;
insert into log (c1,c2,c3,c4) values(round(random()*10),1,2,3);
delete from log where id=:id;
insert into log (c1,c2,c3,c4) values(round(random()*10),1,2,3);
delete from log where id=:id;
insert into log (c1,c2,c3,c4) values(round(random()*10),1,2,3);
insert into log (c1,c2,c3,c4) values(round(random()*10),1,2,3);
insert into log (c1,c2,c3,c4) values(round(random()*10),1,2,3);
insert into log (c1,c2,c3,c4) values(round(random()*10),1,2,3);
insert into log (c1,c2,c3,c4) values(round(random()*10),1,2,3);
delete from log where id=:id;
end;
begin;
delete from log where id=:id;
insert into log (c1,c2,c3,c4) values(round(random()*10),1,2,3);
insert into log (c1,c2,c3,c4) values(round(random()*10),1,2,3);
insert into log (c1,c2,c3,c4) values(round(random()*10),1,2,3);
insert into log (c1,c2,c3,c4) values(round(random()*10),1,2,3);
delete from log where id=:id;
delete from log where id=:id;
delete from log where id=:id;
delete from log where id=:id;
delete from log where id=:id;
delete from log where id=:id;
rollback;
pgbench
pg92@digoal-PowerEdge-R610-> pgbench -M prepared -f ./ins.sql -r -n -h $PGDATA -U postgres -T 60 -c 32 -j 2
transaction type: Custom query
scaling factor: 1
query mode: prepared
number of clients: 32
number of threads: 2
duration: 60 s
number of transactions actually processed: 22635
tps = 376.649815 (including connections establishing)
tps = 376.980475 (excluding connections establishing)
.....语句略
pgbench过程中同时调用analyze_log.
pg92@digoal-PowerEdge-R610-> cat analyze.sh
#!/bin/bash
for ((i=0;i<100;i++))
do
psql -c "select * from analyze_log(1);"
psql -c "select * from analyze_log(1000000);"
done
# 多次调用, 直到取完所有数据.
pg92@digoal-PowerEdge-R610-> ./analyze.sh
验证数据是否准确
digoal=# select c1,count(*),to_char(crt_time,'yyyymmdd') from log where not isdel group by c1,to_char(crt_time,'yyyymmdd') order by c1;
c1 | count | to_char
----+---------+----------
0 | 960617 | 20130426
1 | 1926373 | 20130426
2 | 1924853 | 20130426
3 | 1924954 | 20130426
4 | 1923913 | 20130426
5 | 1924408 | 20130426
6 | 1924650 | 20130426
7 | 1924305 | 20130426
8 | 1923113 | 20130426
9 | 1924381 | 20130426
10 | 962460 | 20130426
(11 rows)
digoal=# select * from log_c1_cnt_day where cnt<>0 order by c1;
c1 | cnt | stat_time
----+---------+-----------
0 | 960617 | 20130426
1 | 1926373 | 20130426
2 | 1924853 | 20130426
3 | 1924954 | 20130426
4 | 1923913 | 20130426
5 | 1924408 | 20130426
6 | 1924650 | 20130426
7 | 1924305 | 20130426
8 | 1923113 | 20130426
9 | 1924381 | 20130426
10 | 962460 | 20130426
(11 rows)
digoal=# select count(*) from log_del ;
count
-------
46085
(1 row)
insert, delete的问题.
1. 可能出现insert未被统计到, 但是delete被统计到的情况.
解决办法 :
log加个isdel字段, del时不真实的删除记录. 这样就可以避免insert未被统计到, 但是delete被统计到的情况.
应用程序在对log表查询时加上isdel is false条件.
2. log_del表的清理, 以及log.isdel=true清理. 使用如下在线过程.
do language plpgsql $$
declare
v_xid int8;
v_xip int8[];
begin
select xid,xip into v_xid,v_xip from log_read where tablename='log';
if found then
delete from log where isdel and xid<=v_xid and xid not in (select unnest(v_xip));
end if;
select xid,xip into v_xid,v_xip from log_read where tablename='log_del';
if found then
delete from log_del where xid<=v_xid and xid not in (select unnest(v_xip));
end if;
end;
$$;
特别注意
由于本例采用了PostgreSQL系统xid来解决气泡问题, 所以特别需要注意以下问题 :
xid的问题, 当使用pg_resetxlog修改xid时(如果xid改小)将打破使用该方法的统计. 所以安全的做法是xid改大可以, 改小不行.
当使用pg_dump导出明细数据到另一个库后, 记得先使用pg_resetxlog将新集群的xid调整到大于明细表的max(xid)
为方便大家查询, 汇总PostgreSQL实时和非实时数据统计的案例分析文章系列 - 如下 :
1. http://blog.163.com/digoal@126/blog/static/163877040201331252945440/
2. http://blog.163.com/digoal@126/blog/static/16387704020133151402415/
3. http://blog.163.com/digoal@126/blog/static/16387704020133155179877/
4. http://blog.163.com/digoal@126/blog/static/16387704020133156636579/
5. http://blog.163.com/digoal@126/blog/static/16387704020133218305242/
6. http://blog.163.com/digoal@126/blog/static/16387704020133224161563/
7. http://blog.163.com/digoal@126/blog/static/16387704020133271134563/
8. http://blog.163.com/digoal@126/blog/static/16387704020134311144755/