PostgreSQL 流式数据处理(聚合、过滤、转换…)系列 - 6
背景
2013年帮朋友做的方案。写了一些列文档来解决当时某个大数据BI平台的异步流式数据处理的功能。
逐步优化,化繁为简。
在业务层面,统计,数据的过滤,数据的清洗,数据的事件触发等。是比较常见的需求。
比如以COUNT就是一个很典型的例子。
在9.2以前全表的count只能通过扫描全表来得到, 即使有pk也必须扫描全表.
9.2版本增加了index only scan的功能, count(*)可以通过仅仅扫描pk就可以得到.
但是如果是一个比较大的表, pk也是很大的, 扫描pk也是个不小的开销.
到了9.6,开始支持并行查询,通过并行,一张1亿的表,COUNT可能只需要几百毫秒。这是一个质的飞跃。(但是还有很多时候用并行并不是最好的)
另外社区也除了一个流式处理的数据库,pipelineDB,但是它的社区版本限制了一个DATABASE只能使用1024个流视图,在编码的地方使用了1BYTE存储CV。
那么回到postgresql数据库本身,有没有办法来优化count全表的操作呢, 如果你的场景真的有必要频繁的count全表, 那么可以尝试一下使用以下方法来优化你的场景.
正文
前五篇关于PostgreSQL实时和非实时数据统计的案例如下 :
http://blog.163.com/digoal@126/blog/static/163877040201331252945440/
http://blog.163.com/digoal@126/blog/static/16387704020133151402415/
http://blog.163.com/digoal@126/blog/static/16387704020133155179877/
http://blog.163.com/digoal@126/blog/static/16387704020133156636579/
http://blog.163.com/digoal@126/blog/static/16387704020133218305242/
本文主要添加一个动态的新增统计维度的功能.
详细的实施过程
测试表 :
create table log
(
id serial primary key,
xid int8 default txid_current() not null,
c1 int not null,
c2 int not null,
c3 int not null,
c4 text not null,
crt_time timestamp default now()
);
create index idx_log_1 on log(xid);
存放count()的表, 假设经常需要按log.c1以及log.crt_time分天, 周, 月, 年进行count()
create table log_c1_cnt_day (c1 int, cnt int8, stat_time text, primary key(c1,stat_time));
create table log_c1_cnt_week (c1 int, cnt int8, stat_time text, primary key(c1,stat_time));
create table log_c1_cnt_month (c1 int, cnt int8, stat_time text, primary key(c1,stat_time));
create table log_c1_cnt_year (c1 int, cnt int8, stat_time text, primary key(c1,stat_time));
存放count()的表, 假设经常需要按log.c2, log.c3以及log.crt_time分天, 周, 月, 年进行count()
create table log_c2_c3_cnt_day (c2 int, c3 int, cnt int8, stat_time text, primary key(c2,c3,stat_time));
create table log_c2_c3_cnt_week (c2 int, c3 int, cnt int8, stat_time text, primary key(c2,c3,stat_time));
create table log_c2_c3_cnt_month (c2 int, c3 int, cnt int8, stat_time text, primary key(c2,c3,stat_time));
create table log_c2_c3_cnt_year (c2 int, c3 int, cnt int8, stat_time text, primary key(c2,c3,stat_time));
插入测试数据
insert into log (c1,c2,c3,c4) values (1,1,1,1);
insert into log (c1,c2,c3,c4) values (2,2,2,2);
验证
digoal=# select * from log;
id | xid | c1 | c2 | c3 | c4 | crt_time
----+-----------+----+----+----+----+----------------------------
1 | 480125659 | 1 | 1 | 1 | 1 | 2013-04-21 20:55:45.907713
2 | 480125660 | 2 | 2 | 2 | 2 | 2013-04-21 20:55:46.286933
(2 rows)
创建分析注册表, 记录每个明细表每次分析的截止xid, xip.
xid 记录统计到哪个xid了, xip记录当前活动事务, 不计入当前统计范畴. 避免气泡问题.
create table log_read
(
tablename name not null,
xid int8 not null,
xip int8[],
xip_res int8[], -- 用于与xid比对的数据. 必须保留所有>=xid的xip信息.
mod_time timestamp,
primary key (tablename)
);
插入初始记录, 表的初始记录xid取值范围( >=0 and <=txid_snapshot_xmin-1 )
insert into log_read values ('log', 0, null, null, now());
创建分析维度信息注册表, 记录每个维度的初始xid信息,
因为所有维度使用同一个表级别的截至值(log_read.xid), 但是维度可能是后期加入的, 所以初始xid可能不一样.
增加func 字段. tablename+func组合pk.
增加初始init_xid字段. ( 历史数据的统计交给其他进程来处理, 历史数据将统计到 <=init_xid and 不包含init_xip )
增加isinit字段, 标识是否为新加的维度.
增加func 字段, 标识该维度调用的函数.
create table log_read_func (
tablename name not null,
func text not null, -- 统计函数名
init_xid int8, -- 初始值由analyze_log计算并更新.
init_xip int8[], -- 初始值由analyze_log计算并更新.
isinit boolean not null, -- true标识这个维度是初始的, false标识不是初始的.
info text, -- 备注
primary key (tablename, func)
);
alter table log_read_func add constraint fk_log_read_func_1 foreign key(tablename) references log_read(tablename);
插入维度初始记录
insert into log_read_func(tablename,func,init_xid,init_xip,isinit,info)
values('log','stat_log_c1',null,null,true,null);
创建log表的串行批量数据分析函数
注意v_limit用于限制多少个xid, 而不是多少条记录, 当一个XID有多条记录时, 如果取到这个XID的话, 这个XID的数据也会全部被处理.
但是如果使用v_limit来限定行数, 就会出现比较危险的情况, 因为如果一个事务包含多条记录的话, 限定行数的方法可能导致一个事务的数据只取到中间部分, 而剩余部分下次就取不到了.
create or replace function analyze_log(v_limit int) returns void as $$
declare
v_advisory_xact_lock int8 := null; -- 串行处理锁.
v_xid_snap txid_snapshot := null; -- 当前事务状态快照
v_xmin int8 := null; -- 当前事务状态快照中未完成的最小事务
v_xmax int8 := null; -- 当前事务状态快照中未分配的最小事务
v_xip int8[] := null; -- 当前事务状态快照中未完成的事务数组
v_func_agg text[]; -- 统计维度函数数组
v_func text; -- 统计维度函数
v_log_read_log_xid int8 := null; -- 上次log的xid分析截止位
v_log_read_log_xid_update int8 := null; -- 更新值, 不能为空
v_log_read_log_xip int8[] := null; -- 上次log_read.xip(tablename=log)
v_log_read_log_xip_do int8[] := null; -- 解析本次log_read.xip(tablename=log) where (xip !@ txid_snapshot)
v_log_read_log_xip_update int8[] := null; -- xip更新值
v_log_read_log_xip_res int8[] := null; -- xip保留值
v_log_read_log_xip_res_update int8[] := null; -- xip保留更新值, 所有大于v_log_read_log_xid_update的元素必须保留.
v_log log[] := null; -- 聚合本次log的分析数组, [末尾调用,false]
v_log_doxip log[] := null; -- 聚合本次分析log数组:
-- where log.xid (@ log_read.xip(tablename=log) and !@ txid_snapshot) , [末尾调用,false]
v_log_read_func_xid int8; -- 本次取出的v_log中的最小xid-1, 没有则取OLD.log_read.xid. [用于更新log_read_func.init_xid where isinit=true]
v_log_read_func_xip int8[]; -- (OLD.log_read.xip + v_xip) ; [用于更新log_read_func.init_xip where isinit=true]
begin
-- 判断limit
if v_limit <=0 then
raise notice 'please ensure v_limit > 0 .';
return;
end if;
-- 串行处理, 如果不能获得锁则直接退出. 确保v_advisory_xact_lock全局唯一.
v_advisory_xact_lock := 1;
if not pg_try_advisory_xact_lock(v_advisory_xact_lock) then
raise notice 'Another function is calling, this call will exit.';
return;
end if;
-- 生成统计维度, 没有则直接退出
perform 1 from log_read_func where tablename='log' limit 1;
if not found then
raise notice 'No func in log_read_func with tablename:%.', 'log';
return;
else
select array_agg(func) into v_func_agg from log_read_func where tablename='log';
end if;
-- 生成 xid snapshot 数据.
v_xid_snap := txid_current_snapshot();
v_xmin := txid_snapshot_xmin(v_xid_snap);
v_xmax := txid_snapshot_xmax(v_xid_snap);
select array_agg(t) into v_xip from txid_snapshot_xip(v_xid_snap) g(t);
-- 取v_log_read_log_xid截止值, v_log_read_log_xip数组.
select xid,xip,xip_res into v_log_read_log_xid,v_log_read_log_xip,v_log_read_log_xip_res from log_read where tablename='log';
if not found then
raise notice 'log_read no log entry. please add it in log_read table first.';
return;
end if;
-- 生成v_log_read_func_xip.
-- 必须放在更新log_read之前, 否则取到的就是更新后的数据了.
v_log_read_func_xip := array_cat(v_log_read_log_xip, v_xip);
-- 取log1(取非xip中的数据, 隔离log2操作)
-- 取xid临界点
select max(xid) into v_log_read_log_xid_update from (select xid from log where xid > v_log_read_log_xid and xid < v_xmax and xid not in (select * from unnest(v_xip) union all select * from unnest(v_log_read_log_xip_res)) order by xid limit v_limit) t;
if v_log_read_log_xid_update is not null then
raise notice '取log1';
-- 根据临界点, 取log数据
select array_agg(log) into v_log from (select log from log where xid > v_log_read_log_xid and xid<=v_log_read_log_xid_update and xid not in (select * from unnest(v_xip) union all select * from unnest(v_log_read_log_xip_res)) order by xid) t;
-- 如果有数据, v_log_read_func_xid取v_log.min(xid) - 1
select min(i.xid) - 1 into v_log_read_func_xid from unnest(v_log) i;
else
-- 如果没有数据, 更新值不变
v_log_read_log_xid_update := v_log_read_log_xid;
-- 如果没有数据, v_log_read_func_xid取OLD.log_read.xid
v_log_read_func_xid := v_log_read_log_xid;
end if;
-- 取log2 (log_xip - v_xip) (取xip中的数据, 隔离log1操作)
-- 生成log_read.xip(tablename=log) do数组(已经完成的事务)
select array_agg(i) into v_log_read_log_xip_do from (select * from unnest(v_log_read_log_xip) i except select * from unnest(v_xip))t where i is not null;
-- 生成log_read.xip(tablename=log) update数组(未完成的事务)
select array_agg(i) into v_log_read_log_xip_update from
( select i from (select * from unnest(v_log_read_log_xip) i union all select * from unnest(v_xip)
except select * from unnest(v_log_read_log_xip_do)) t where i is not null group by i ) t;
-- 生成xip_res更新值
select array_agg(i) into v_log_read_log_xip_res_update from (select * from unnest(v_log_read_log_xip_res) i union select * from unnest(v_log_read_log_xip) union select * from unnest(v_xip))t where i>v_log_read_log_xid_update;
-- 生成log do数组
select array_agg(log) into v_log_doxip from log where xid in (select * from unnest(v_log_read_log_xip_do));
-- 更新log_read(tablename=log)
update log_read set
xip=v_log_read_log_xip_update,
xid=v_log_read_log_xid_update,
xip_res=v_log_read_log_xip_res_update,
mod_time=now()
where tablename='log';
-- raise notice 'log_read.oldxip(log): %.', v_log_read_log_xip;
-- raise notice 'log_read.newxip(log): %.', v_log_read_log_xip_update;
-- raise notice 'log_read.newxipres(log): %.', v_log_read_log_xip_res_update;
-- 分析函数可以另外写, 在此调用.
foreach v_func in array v_func_agg loop
-- 更新log_read_func where isinit=true
update log_read_func set
init_xid=v_log_read_func_xid,
init_xip=v_log_read_func_xip,
isinit=false
where tablename='log'
and func=v_func
and isinit;
-- 执行统计函数
execute 'select '||v_func||'($1)' using v_log;
execute 'select '||v_func||'($1)' using v_log_doxip;
end loop;
return;
end;
$$ language plpgsql;
统计函数stat_log_c1
CREATE OR REPLACE FUNCTION public.stat_log_c1(v_log log[])
RETURNS void
LANGUAGE plpgsql
AS $function$
declare
v_stat_time text;
v_c1 int;
v_cnt int8;
begin
-- 统计log_c1_cnt_day
for v_stat_time, v_c1, v_cnt in select to_char(crt_time, 'yyyymmdd'), c1 , count(*) from (select ((unnest(v_log)::log)).*) t group by to_char(crt_time, 'yyyymmdd'), c1 loop
perform 1 from log_c1_cnt_day where c1=v_c1 and stat_time=v_stat_time;
if not found then
insert into log_c1_cnt_day(c1, cnt, stat_time) values (v_c1, v_cnt, v_stat_time);
else
update log_c1_cnt_day set cnt=cnt+v_cnt where c1=v_c1 and stat_time=v_stat_time;
end if;
end loop;
end;
$function$;
测试, 清理原始数据
truncate log;
truncate log_c1_cnt_day;
truncate log_c1_cnt_week;
update log_read set xid=0, xip=null, xip_res=null;
update log_read_func set isinit=true;
pgbench脚本, 测试插入场景
cat ins.sql
insert into log (c1,c2,c3,c4) values(round(random()*10),1,2,3);
pgbench
pg92@digoal-PowerEdge-R610-> pgbench -M prepared -f ./ins.sql -r -n -h $PGDATA -U postgres -T 60 -c 8 -j 2
transaction type: Custom query
scaling factor: 1
query mode: prepared
number of clients: 8
number of threads: 2
duration: 60 s
number of transactions actually processed: 2940924
tps = 49015.188418 (including connections establishing)
tps = 49026.219678 (excluding connections establishing)
statement latencies in milliseconds:
0.161868 insert into log (c1,c2,c3,c4) values(round(random()*10),1,2,3);
压力测试的同时执行analyze_log. 确保pgbench同时执行analyze_log.
pg92@digoal-PowerEdge-R610-> cat analyze.sh
#!/bin/bash
for ((i=0;i<100;i++))
do
psql -c "select * from analyze_log(1);"
psql -c "select * from analyze_log(1000000);"
done
调用analyze.sh
验证数据是否准确
digoal=# select c1,count(*),to_char(crt_time,'yyyymmdd') from log group by c1,to_char(crt_time,'yyyymmdd') order by c1;
c1 | count | to_char
----+--------+----------
0 | 147225 | 20130422
1 | 294651 | 20130422
2 | 294146 | 20130422
3 | 293377 | 20130422
4 | 295507 | 20130422
5 | 294433 | 20130422
6 | 293960 | 20130422
7 | 292733 | 20130422
8 | 294489 | 20130422
9 | 293249 | 20130422
10 | 147154 | 20130422
(11 rows)
Time: 6453.502 ms
digoal=# select * from log_c1_cnt_day where cnt<>0 order by c1;
c1 | cnt | stat_time
----+--------+-----------
0 | 147225 | 20130422
1 | 294651 | 20130422
2 | 294146 | 20130422
3 | 293377 | 20130422
4 | 295507 | 20130422
5 | 294433 | 20130422
6 | 293960 | 20130422
7 | 292733 | 20130422
8 | 294489 | 20130422
9 | 293249 | 20130422
10 | 147154 | 20130422
(11 rows)
Time: 0.660 ms
测试多SQL, 带回滚场景.
pgbench脚本
cat ins.sql
begin;
insert into log (c1,c2,c3,c4) values(round(random()*10),1,2,3);
insert into log (c1,c2,c3,c4) values(round(random()*10),1,2,3);
end;
begin;
insert into log (c1,c2,c3,c4) values(round(random()*10),1,2,3);
insert into log (c1,c2,c3,c4) values(round(random()*10),1,2,3);
rollback;
insert into log (c1,c2,c3,c4) values(round(random()*10),1,2,3);
insert into log (c1,c2,c3,c4) values(round(random()*10),1,2,3);
pgbench
pg92@digoal-PowerEdge-R610-> pgbench -M prepared -f ./ins.sql -r -n -h $PGDATA -U postgres -T 60 -c 8 -j 2
transaction type: Custom query
scaling factor: 1
query mode: prepared
number of clients: 8
number of threads: 2
duration: 60 s
number of transactions actually processed: 394520
tps = 6573.363077 (including connections establishing)
tps = 6574.835673 (excluding connections establishing)
statement latencies in milliseconds:
0.057675 begin;
0.152981 insert into log (c1,c2,c3,c4) values(round(random()*10),1,2,3);
0.148598 insert into log (c1,c2,c3,c4) values(round(random()*10),1,2,3);
0.076637 end;
0.054797 begin;
0.153712 insert into log (c1,c2,c3,c4) values(round(random()*10),1,2,3);
0.148711 insert into log (c1,c2,c3,c4) values(round(random()*10),1,2,3);
0.077051 rollback;
0.168767 insert into log (c1,c2,c3,c4) values(round(random()*10),1,2,3);
0.167405 insert into log (c1,c2,c3,c4) values(round(random()*10),1,2,3);
压力测试的同时执行analyze_log. 确保pgbench同时执行analyze_log.
pg92@digoal-PowerEdge-R610-> cat analyze.sh
#!/bin/bash
for ((i=0;i<100;i++))
do
psql -c "select * from analyze_log(1);"
psql -c "select * from analyze_log(1000000);"
done
调用analyze.sh
验证数据是否准确
digoal=# select c1,count(*),to_char(crt_time,'yyyymmdd') from log group by c1,to_char(crt_time,'yyyymmdd') order by c1;
c1 | count | to_char
----+--------+----------
0 | 206061 | 20130422
1 | 412799 | 20130422
2 | 411847 | 20130422
3 | 409796 | 20130422
4 | 411644 | 20130422
5 | 412170 | 20130422
6 | 410857 | 20130422
7 | 411128 | 20130422
8 | 411509 | 20130422
9 | 411140 | 20130422
10 | 205053 | 20130422
(11 rows)
Time: 8760.367 ms
digoal=# select * from log_c1_cnt_day where cnt<>0 order by c1;
c1 | cnt | stat_time
----+--------+-----------
0 | 206061 | 20130422
1 | 412799 | 20130422
2 | 411847 | 20130422
3 | 409796 | 20130422
4 | 411644 | 20130422
5 | 412170 | 20130422
6 | 410857 | 20130422
7 | 411128 | 20130422
8 | 411509 | 20130422
9 | 411140 | 20130422
10 | 205053 | 20130422
(11 rows)
Time: 0.716 ms
新增测试项目, 增加统计维度.
统计函数stat_log_c1_week
CREATE OR REPLACE FUNCTION public.stat_log_c1_week(v_log log[])
RETURNS void
LANGUAGE plpgsql
AS $function$
declare
v_stat_time text;
v_c1 int;
v_cnt int8;
begin
-- 统计log_c1_cnt_week
for v_stat_time, v_c1, v_cnt in select to_char(date(crt_time)-(EXTRACT(ISODOW FROM date(crt_time)))::int+1,'yyyymmdd'), c1 , count(*) from (select ((unnest(v_log)::log)).*) t group by to_char(date(crt_time)-(EXTRACT(ISODOW FROM date(crt_time)))::int+1,'yyyymmdd'), c1 loop
perform 1 from log_c1_cnt_week where c1=v_c1 and stat_time=v_stat_time;
if not found then
insert into log_c1_cnt_week(c1, cnt, stat_time) values (v_c1, v_cnt, v_stat_time);
else
update log_c1_cnt_week set cnt=cnt+v_cnt where c1=v_c1 and stat_time=v_stat_time;
end if;
end loop;
end;
$function$;
注册统计维度函数, 注册时isinit=true. 第一次调用analyze_log后更新为false, 同时更新init_xid, init_xip等.
insert into log_read_func(tablename,func,init_xid,init_xip,isinit,info) values('log','stat_log_c1_week',null,null,true,null);
pgbench
pg92@digoal-PowerEdge-R610-> pgbench -M prepared -f ./ins.sql -r -n -h $PGDATA -U postgres -T 60 -c 8 -j 2
transaction type: Custom query
scaling factor: 1
query mode: prepared
number of clients: 8
number of threads: 2
duration: 60 s
number of transactions actually processed: 365012
tps = 6083.034829 (including connections establishing)
tps = 6084.366283 (excluding connections establishing)
statement latencies in milliseconds:
0.066413 begin;
0.163332 insert into log (c1,c2,c3,c4) values(round(random()*10),1,2,3);
0.159310 insert into log (c1,c2,c3,c4) values(round(random()*10),1,2,3);
0.086508 end;
0.063532 begin;
0.163740 insert into log (c1,c2,c3,c4) values(round(random()*10),1,2,3);
0.159271 insert into log (c1,c2,c3,c4) values(round(random()*10),1,2,3);
0.086722 rollback;
0.177647 insert into log (c1,c2,c3,c4) values(round(random()*10),1,2,3);
0.177949 insert into log (c1,c2,c3,c4) values(round(random()*10),1,2,3);
压力测试的同时执行analyze_log. 确保pgbench同时执行analyze_log.
pg92@digoal-PowerEdge-R610-> cat analyze.sh
#!/bin/bash
for ((i=0;i<100;i++))
do
psql -c "select * from analyze_log(1);"
psql -c "select * from analyze_log(1000000);"
done
调用analyze.sh
数据全部取完后
digoal=# select analyze_log(1000000);
NOTICE: v_log_read_log_xip no element.
NOTICE: no data in log table which xid>493263112 and xid<493263115 and xid not in (select unnest(<NULL>) union all select unnest(<NULL>)).
analyze_log
-------------
(1 row)
Time: 1.169 ms
digoal=# select * from log_read;
tablename | xid | xip | mod_time
-----------+-----------+-----+----------------------------
log | 493263112 | | 2013-04-22 15:51:00.450235
(1 row)
Time: 0.566 ms
digoal=# select * from log_read_func;
tablename | func | init_xid | init_xip | isinit | info
-----------+------------------+-----------+-----------------------+--------+------
log | stat_log_c1 | 0 | | f |
log | stat_log_c1_week | 491803059 | {492492724,492492725} | f |
(2 rows)
Time: 0.349 ms
数据校验
log_c1_cnt_day (取>0 or 包含init_xip)
digoal=# select c1,count(*),to_char(crt_time,'yyyymmdd') from log where xid>0 group by c1,to_char(crt_time,'yyyymmdd') order by c1;
c1 | count | to_char
----+--------+----------
0 | 278990 | 20130422
1 | 559150 | 20130422
2 | 557552 | 20130422
3 | 555797 | 20130422
4 | 557475 | 20130422
5 | 558780 | 20130422
6 | 556803 | 20130422
7 | 557337 | 20130422
8 | 557065 | 20130422
9 | 557328 | 20130422
10 | 277775 | 20130422
(11 rows)
Time: 15838.259 ms
digoal=# select * from log_c1_cnt_day where cnt<>0 order by c1;
c1 | cnt | stat_time
----+--------+-----------
0 | 278990 | 20130422
1 | 559150 | 20130422
2 | 557552 | 20130422
3 | 555797 | 20130422
4 | 557475 | 20130422
5 | 558780 | 20130422
6 | 556803 | 20130422
7 | 557337 | 20130422
8 | 557065 | 20130422
9 | 557328 | 20130422
10 | 277775 | 20130422
(11 rows)
Time: 0.668 ms
log_c1_cnt_week (取>491803059 or 包含init_xip)
digoal=# select c1,count(*),to_char(date(crt_time)-(EXTRACT(ISODOW FROM date(crt_time)))::int+1,'yyyymmdd') from log where xid>491803059 or xid in (492492724,492492725) group by c1,to_char(date(crt_time)-(EXTRACT(ISODOW FROM date(crt_time)))::int+1,'yyyymmdd') order by c1;
c1 | count | to_char
----+--------+----------
0 | 72929 | 20130422
1 | 146351 | 20130422
2 | 145705 | 20130422
3 | 146001 | 20130422
4 | 145831 | 20130422
5 | 146610 | 20130422
6 | 145946 | 20130422
7 | 146209 | 20130422
8 | 145556 | 20130422
9 | 146188 | 20130422
10 | 72722 | 20130422
(11 rows)
Time: 5415.514 ms
digoal=# select * from log_c1_cnt_week where cnt<>0 order by c1;
c1 | cnt | stat_time
----+--------+-----------
0 | 72929 | 20130422
1 | 146351 | 20130422
2 | 145705 | 20130422
3 | 146001 | 20130422
4 | 145831 | 20130422
5 | 146610 | 20130422
6 | 145946 | 20130422
7 | 146209 | 20130422
8 | 145556 | 20130422
9 | 146188 | 20130422
10 | 72722 | 20130422
(11 rows)
Time: 0.658 ms
历史数据分析
digoal=# select * from log_read_func;
tablename | func | init_xid | init_xip | isinit | info
-----------+------------------+-----------+-----------------------+--------+------
log | stat_log_c1 | 0 | | f |
log | stat_log_c1_week | 491803059 | {492492724,492492725} | f |
(2 rows)
Time: 0.349 ms
stat_log_c1 历史数据分析条件(xid<=0)
stat_log_c1_week 历史数据分析条件(xid<=491803059 and xid not in (492492724,492492725))
特别注意
由于本例采用了PostgreSQL系统xid来解决气泡问题, 所以特别需要注意以下问题 :
xid的问题, 当使用pg_resetxlog修改xid时(如果xid改小)将打破使用该方法的统计. 所以安全的做法是xid改大可以, 改小不行.
当使用pg_dump导出明细数据到另一个库后, 记得先使用pg_resetxlog将新集群的xid调整到大于明细表的max(xid)
为方便大家查询, 汇总PostgreSQL实时和非实时数据统计的案例分析文章系列 - 如下 :
1. http://blog.163.com/digoal@126/blog/static/163877040201331252945440/
2. http://blog.163.com/digoal@126/blog/static/16387704020133151402415/
3. http://blog.163.com/digoal@126/blog/static/16387704020133155179877/
4. http://blog.163.com/digoal@126/blog/static/16387704020133156636579/
5. http://blog.163.com/digoal@126/blog/static/16387704020133218305242/
6. http://blog.163.com/digoal@126/blog/static/16387704020133224161563/
7. http://blog.163.com/digoal@126/blog/static/16387704020133271134563/
8. http://blog.163.com/digoal@126/blog/static/16387704020134311144755/