PostgreSQL 数据库多列复合索引的字段顺序选择原理
背景
当需要创建多列复合索引时,应该使用什么样的顺序呢?
多列复合索引的组织结构与单列字段索引结构类似,只是需要按索引内表达式指定的顺序编排。
例如
create index idx on tbl using btree (udf(c1) desc, c2 , c3 desc nulls last);
那么会按定义的顺序编排。
举个例子
postgres=# create unlogged table tab1 (id int, c1 int, c2 int);
CREATE TABLE
postgres=# insert into tab1 select id, random()*9, 1 from generate_series(1,1000000) t(id);
INSERT 0 1000000
postgres=# insert into tab1 select id, random()*9, 3 from generate_series(1,1000000) t(id);
INSERT 0 1000000
postgres=# insert into tab1 values (1,1,2);
INSERT 0 1
postgres=# insert into tab1 select id, 1, 3 from generate_series(1,1000000) t(id);
INSERT 0 1000000
postgres=# insert into tab1 select id, 1, 1 from generate_series(1,1000000) t(id);
INSERT 0 1000000
c1=1, c2=2的记录只有一条
1、搜索c1=1, c2=2,只需要扫描4个BLOCK
postgres=# explain (analyze,verbose,timing,costs,buffers) select * from tab1 where c1=1 and c2=2;
QUERY PLAN
-----------------------------------------------------------------------------------------------------------------------
Index Scan using idx_tab1 on public.tab1 (cost=0.43..2.38 rows=1 width=12) (actual time=0.017..0.018 rows=1 loops=1)
Output: id, c1, c2
Index Cond: ((tab1.c1 = 1) AND (tab1.c2 = 2))
Buffers: shared hit=4 (4个BLOCK,包括 root page, branch page, leaf page, HEAP PAGE)
Planning time: 0.214 ms
Execution time: 0.042 ms
(6 rows)
2、搜索其他的,需要扫描很多BLOCK。
postgres=# explain (analyze,verbose,timing,costs,buffers) select * from tab1 where c1=1 and c2=3;
QUERY PLAN
-----------------------------------------------------------------------------------------------------------------------------------------
Index Scan using idx_tab1 on public.tab1 (cost=0.43..46108.77 rows=1109400 width=12) (actual time=0.026..237.712 rows=1111519 loops=1)
Output: id, c1, c2
Index Cond: ((tab1.c1 = 1) AND (tab1.c2 = 3))
Buffers: shared hit=22593 read=303 (包括heap page)
Planning time: 0.089 ms
Execution time: 328.249 ms
(6 rows)
postgres=# explain (analyze,verbose,timing,costs,buffers) select * from tab1 where c1=1 and c2=1;
QUERY PLAN
-----------------------------------------------------------------------------------------------------------------------------------------
Index Scan using idx_tab1 on public.tab1 (cost=0.43..46108.77 rows=1109400 width=12) (actual time=0.022..238.399 rows=1110527 loops=1)
Output: id, c1, c2
Index Cond: ((tab1.c1 = 1) AND (tab1.c2 = 1))
Buffers: shared hit=22582 read=299 (包括heap page)
Planning time: 0.094 ms
Execution time: 329.331 ms
(6 rows)
那么如何知道数据库是快速定位到c1=1, c2=2的记录的呢?
可以使用pageinspect来看一看索引内部的结构
postgres=# create extension pageinspect ;
CREATE EXTENSION
查看索引内部结构,看看如何通过复合索引快速定位一条记录
首先要查看索引的第一个PAGE,即metapage,它会告诉你这个索引有几层,ROOT PAGE在哪里
postgres=# SELECT * FROM bt_metap('idx_tab1');
magic | version | root | level | fastroot | fastlevel
--------+---------+------+-------+----------+-----------
340322 | 2 | 290 | 2 | 290 | 2
(1 row)
表示这个索引除去ROOT节点有2层,ROOT节点是290号数据块。
查看根页
postgres=# SELECT * FROM bt_page_items('idx_tab1', 290);
itemoffset | ctid | itemlen | nulls | vars | data
------------+-----------+---------+-------+------+-------------------------
1 | (3,1) | 8 | f | f |
2 | (289,1) | 16 | f | f | 00 00 00 00 03 00 00 00
3 | (12341,1) | 16 | f | f | 01 00 00 00 01 00 00 00
4 | (12124,1) | 16 | f | f | 01 00 00 00 01 00 00 00
5 | (11907,1) | 16 | f | f | 01 00 00 00 01 00 00 00
6 | (11690,1) | 16 | f | f | 01 00 00 00 01 00 00 00
7 | (11473,1) | 16 | f | f | 01 00 00 00 01 00 00 00
8 | (11256,1) | 16 | f | f | 01 00 00 00 01 00 00 00
9 | (11039,1) | 16 | f | f | 01 00 00 00 01 00 00 00
10 | (10822,1) | 16 | f | f | 01 00 00 00 01 00 00 00
11 | (10605,1) | 16 | f | f | 01 00 00 00 01 00 00 00
12 | (10388,1) | 16 | f | f | 01 00 00 00 01 00 00 00
13 | (10171,1) | 16 | f | f | 01 00 00 00 01 00 00 00
14 | (9954,1) | 16 | f | f | 01 00 00 00 01 00 00 00
15 | (9737,1) | 16 | f | f | 01 00 00 00 01 00 00 00
16 | (9520,1) | 16 | f | f | 01 00 00 00 01 00 00 00
17 | (9303,1) | 16 | f | f | 01 00 00 00 01 00 00 00
18 | (9086,1) | 16 | f | f | 01 00 00 00 01 00 00 00
19 | (575,1) | 16 | f | f | 01 00 00 00 01 00 00 00
20 | (8866,1) | 16 | f | f | 01 00 00 00 03 00 00 00
21 | (8649,1) | 16 | f | f | 01 00 00 00 03 00 00 00
22 | (8432,1) | 16 | f | f | 01 00 00 00 03 00 00 00
23 | (8215,1) | 16 | f | f | 01 00 00 00 03 00 00 00
24 | (7998,1) | 16 | f | f | 01 00 00 00 03 00 00 00
25 | (7781,1) | 16 | f | f | 01 00 00 00 03 00 00 00
26 | (7564,1) | 16 | f | f | 01 00 00 00 03 00 00 00
27 | (7347,1) | 16 | f | f | 01 00 00 00 03 00 00 00
28 | (7130,1) | 16 | f | f | 01 00 00 00 03 00 00 00
29 | (6913,1) | 16 | f | f | 01 00 00 00 03 00 00 00
30 | (6696,1) | 16 | f | f | 01 00 00 00 03 00 00 00
31 | (6479,1) | 16 | f | f | 01 00 00 00 03 00 00 00
32 | (6262,1) | 16 | f | f | 01 00 00 00 03 00 00 00
33 | (6045,1) | 16 | f | f | 01 00 00 00 03 00 00 00
34 | (5828,1) | 16 | f | f | 01 00 00 00 03 00 00 00
35 | (5611,1) | 16 | f | f | 01 00 00 00 03 00 00 00
36 | (860,1) | 16 | f | f | 01 00 00 00 03 00 00 00
37 | (1145,1) | 16 | f | f | 02 00 00 00 01 00 00 00
38 | (1430,1) | 16 | f | f | 02 00 00 00 03 00 00 00
39 | (1715,1) | 16 | f | f | 03 00 00 00 01 00 00 00
40 | (2000,1) | 16 | f | f | 03 00 00 00 03 00 00 00
41 | (2285,1) | 16 | f | f | 04 00 00 00 01 00 00 00
42 | (2570,1) | 16 | f | f | 04 00 00 00 03 00 00 00
43 | (2855,1) | 16 | f | f | 05 00 00 00 01 00 00 00
44 | (3140,1) | 16 | f | f | 05 00 00 00 03 00 00 00
45 | (3425,1) | 16 | f | f | 06 00 00 00 01 00 00 00
46 | (3710,1) | 16 | f | f | 06 00 00 00 03 00 00 00
47 | (3995,1) | 16 | f | f | 07 00 00 00 01 00 00 00
48 | (4280,1) | 16 | f | f | 07 00 00 00 03 00 00 00
49 | (4565,1) | 16 | f | f | 07 00 00 00 03 00 00 00
50 | (4850,1) | 16 | f | f | 08 00 00 00 01 00 00 00
51 | (5135,1) | 16 | f | f | 08 00 00 00 03 00 00 00
52 | (5420,1) | 16 | f | f | 09 00 00 00 03 00 00 00
(52 rows)
索引的非leaf节点,data表示这个PAGE的最小边界值,最左边的页没有最小值
如何快速找到c1=1 and c2=2,通过以上信息,可以知道1,2在575号数据块中。
19 | (575,1) | 16 | f | f | 01 00 00 00 01 00 00 00
20 | (8866,1) | 16 | f | f | 01 00 00 00 03 00 00 00
继续查看575号索引页的内容。这个页是第一层(不是最后一层),分支节点
第一条表示与当前页右边的相邻页,data是它的最小值。第二条表示当前页左边的相邻页,data为空。
postgres=# SELECT * FROM bt_page_items('idx_tab1', 575);
itemoffset | ctid | itemlen | nulls | vars | data
------------+----------+---------+-------+------+-------------------------
1 | (8712,1) | 16 | f | f | 01 00 00 00 03 00 00 00
2 | (572,1) | 8 | f | f |
3 | (573,1) | 16 | f | f | 01 00 00 00 01 00 00 00
4 | (574,1) | 16 | f | f | 01 00 00 00 01 00 00 00
5 | (576,1) | 16 | f | f | 01 00 00 00 01 00 00 00
6 | (577,1) | 16 | f | f | 01 00 00 00 01 00 00 00
7 | (578,1) | 16 | f | f | 01 00 00 00 01 00 00 00
8 | (579,1) | 16 | f | f | 01 00 00 00 01 00 00 00
9 | (580,1) | 16 | f | f | 01 00 00 00 01 00 00 00
10 | (581,1) | 16 | f | f | 01 00 00 00 01 00 00 00
11 | (582,1) | 16 | f | f | 01 00 00 00 01 00 00 00
12 | (583,1) | 16 | f | f | 01 00 00 00 01 00 00 00
13 | (584,1) | 16 | f | f | 01 00 00 00 01 00 00 00
14 | (585,1) | 16 | f | f | 01 00 00 00 01 00 00 00
15 | (586,1) | 16 | f | f | 01 00 00 00 01 00 00 00
16 | (587,1) | 16 | f | f | 01 00 00 00 01 00 00 00
17 | (588,1) | 16 | f | f | 01 00 00 00 01 00 00 00
18 | (589,1) | 16 | f | f | 01 00 00 00 01 00 00 00
19 | (590,1) | 16 | f | f | 01 00 00 00 01 00 00 00
20 | (591,1) | 16 | f | f | 01 00 00 00 01 00 00 00
21 | (592,1) | 16 | f | f | 01 00 00 00 01 00 00 00
22 | (593,1) | 16 | f | f | 01 00 00 00 01 00 00 00
23 | (594,1) | 16 | f | f | 01 00 00 00 01 00 00 00
24 | (595,1) | 16 | f | f | 01 00 00 00 01 00 00 00
25 | (596,1) | 16 | f | f | 01 00 00 00 01 00 00 00
26 | (597,1) | 16 | f | f | 01 00 00 00 01 00 00 00
27 | (598,1) | 16 | f | f | 01 00 00 00 01 00 00 00
28 | (599,1) | 16 | f | f | 01 00 00 00 01 00 00 00
29 | (600,1) | 16 | f | f | 01 00 00 00 01 00 00 00
30 | (601,1) | 16 | f | f | 01 00 00 00 01 00 00 00
31 | (602,1) | 16 | f | f | 01 00 00 00 01 00 00 00
32 | (603,1) | 16 | f | f | 01 00 00 00 01 00 00 00
33 | (604,1) | 16 | f | f | 01 00 00 00 01 00 00 00
34 | (605,1) | 16 | f | f | 01 00 00 00 01 00 00 00
35 | (606,1) | 16 | f | f | 01 00 00 00 01 00 00 00
36 | (607,1) | 16 | f | f | 01 00 00 00 01 00 00 00
37 | (608,1) | 16 | f | f | 01 00 00 00 01 00 00 00
38 | (609,1) | 16 | f | f | 01 00 00 00 01 00 00 00
39 | (610,1) | 16 | f | f | 01 00 00 00 01 00 00 00
40 | (5488,1) | 16 | f | f | 01 00 00 00 01 00 00 00
41 | (8961,1) | 16 | f | f | 01 00 00 00 03 00 00 00
42 | (8960,1) | 16 | f | f | 01 00 00 00 03 00 00 00
。。。。。。。。。。。。。。
通过这两行,找到了c1=1.c2=2应该在5488号索引页中。
40 | (5488,1) | 16 | f | f | 01 00 00 00 01 00 00 00
41 | (8961,1) | 16 | f | f | 01 00 00 00 03 00 00 00
继续搜索索引也,第二层(最后一层),叶子节点
postgres=# SELECT * FROM bt_page_items('idx_tab1', 5488);
itemoffset | ctid | itemlen | nulls | vars | data
------------+-------------+---------+-------+------+-------------------------
1 | (16215,25) | 16 | f | f | 01 00 00 00 03 00 00 00
2 | (5398,127) | 16 | f | f | 01 00 00 00 01 00 00 00
3 | (5398,137) | 16 | f | f | 01 00 00 00 01 00 00 00
4 | (5398,156) | 16 | f | f | 01 00 00 00 01 00 00 00
5 | (5398,172) | 16 | f | f | 01 00 00 00 01 00 00 00
.....
130 | (5405,10) | 16 | f | f | 01 00 00 00 01 00 00 00
131 | (5405,15) | 16 | f | f | 01 00 00 00 01 00 00 00
132 | (5405,17) | 16 | f | f | 01 00 00 00 01 00 00 00
133 | (5405,35) | 16 | f | f | 01 00 00 00 01 00 00 00
134 | (5405,59) | 16 | f | f | 01 00 00 00 01 00 00 00
135 | (10810,151) | 16 | f | f | 01 00 00 00 02 00 00 00
136 | (16216,41) | 16 | f | f | 01 00 00 00 03 00 00 00
137 | (16216,40) | 16 | f | f | 01 00 00 00 03 00 00 00
138 | (16216,39) | 16 | f | f | 01 00 00 00 03 00 00 00
...
找到记录
HEAP PAGE
135 | (10810,151) | 16 | f | f | 01 00 00 00 02 00 00 00
因为是叶子节点,所以ctid表示的是HEAP的偏移值,直接在HEAP PAGE中查看
postgres=# select * from tab1 where ctid='(10810,151)';
id | c1 | c2
----+----+----
1 | 1 | 2
(1 row)
在了解了多列索引的内部结构后,可以来看一下几种查询场景的优化
例子 - 范围+等值查询
驱动列使用范围条件,第二列使用等值条件
虽然走了索引,但是扫描了第一列的所有索引页。
性能不佳
postgres=# explain (analyze,verbose,timing,costs,buffers) select * from tab1 where c1 between 1 and 9 and c2=2;
QUERY PLAN
-----------------------------------------------------------------------------------------------------------------------------
Index Scan using idx_tab1 on public.tab1 (cost=0.43..60757.38 rows=1 width=12) (actual time=0.027..106.362 rows=1 loops=1)
Output: id, c1, c2
Index Cond: ((tab1.c1 >= 1) AND (tab1.c1 <= 9) AND (tab1.c2 = 2))
Buffers: shared hit=8321
Planning time: 0.099 ms
Execution time: 106.422 ms
(6 rows)
优化
新建复合索引,将等值列放在前面
postgres=# create index idx_tab1_2 on tab1 using btree (c2,c1);
CREATE INDEX
等值条件直接被过滤,只需要扫描一条索引ITEM
postgres=# explain (analyze,verbose,timing,costs,buffers) select * from tab1 where c1 between 1 and 9 and c2=2;
QUERY PLAN
-------------------------------------------------------------------------------------------------------------------------
Index Scan using idx_tab1_2 on public.tab1 (cost=0.43..2.35 rows=1 width=12) (actual time=0.017..0.018 rows=1 loops=1)
Output: id, c1, c2
Index Cond: ((tab1.c2 = 2) AND (tab1.c1 >= 1) AND (tab1.c1 <= 9))
Buffers: shared hit=4
Planning time: 0.095 ms
Execution time: 0.040 ms
(6 rows)
例子 - 多值+等值查询
PostgreSQL针对离散多值查询,有一定的优化,仅仅扫描了多个离散值的索引ITEM
drop index idx_tab1_2;
postgres=# explain (analyze,verbose,timing,costs,buffers) select * from tab1 where c1 in (1,2,3,4,5,6,7,8,9) and c2=2;
QUERY PLAN
------------------------------------------------------------------------------------------------------------------------
Index Scan using idx_tab1 on public.tab1 (cost=0.43..13.90 rows=1 width=12) (actual time=0.024..0.186 rows=1 loops=1)
Output: id, c1, c2
Index Cond: ((tab1.c1 = ANY ('{1,2,3,4,5,6,7,8,9}'::integer[])) AND (tab1.c2 = 2))
Buffers: shared hit=21 read=7
Planning time: 0.114 ms
Execution time: 0.208 ms
(6 rows)
而如果将单值列放在前面,多值列放在后面,扫描的BLOCK会更少,但是会将离散过滤条件作为FILTER条件。
postgres=# create index idx_tab1_2 on tab1 using btree (c2,c1);
CREATE INDEX
postgres=# explain (analyze,verbose,timing,costs,buffers) select * from tab1 where c1 in (1,2,3,4,5,6,7,8,9) and c2=2;
QUERY PLAN
-------------------------------------------------------------------------------------------------------------------------
Index Scan using idx_tab1_2 on public.tab1 (cost=0.43..2.35 rows=1 width=12) (actual time=0.027..0.027 rows=1 loops=1)
Output: id, c1, c2
Index Cond: (tab1.c2 = 2)
Filter: (tab1.c1 = ANY ('{1,2,3,4,5,6,7,8,9}'::integer[]))
Buffers: shared hit=4
Planning time: 0.107 ms
Execution time: 0.047 ms
(7 rows)
因为c2=2是驱动列,使用第二个索引,可以直接命中到1条item,其他的不需要扫到,所以快了很多。
假设有两个索引存在,对于数据存在倾斜的情况,数据库会根据过滤性自动选择合适的索引。
小结
PostgreSQL目前还不支持非连续性的索引扫描,所以当驱动列(第一列)使用了范围扫描后,即使复合索引有第二列,并且第二列是个等值查询,那么也要扫描第一列范围覆盖的所有索引。
这样就出现了索引页扫描的IO放大(因为可能扫了一些实际条件不符的INDEX PAGE)。
多列复合索引的创建建议:
1、离散查询条件(例如 等值)的列放在最前面,如果一个复合查询中有多个等值查询的列,尽量将选择性好(count(distinct) 值多的)的放在前面。
2、离散查询条件(例如 多值)的列放在后面,如果一个复合查询中有多个多值查询的列,尽量将选择性好(count(distinct) 值多的)的放在前面。
3、连续查询条件(例如 范围查询)的列放在最后面,如果一个复合查询中有多个多值查询的列,尽量将输入范围条件返回结果集少的列放前面,提高筛选效率(同时也减少索引扫描的范围)。
4、如果返回的结果集非常大(或者说条件命中率很高),并且属于流式返回(或需要高效率优先返回前面几条记录),同时有排序输出的需求。建议按排序键建立索引。
参考
《PostgreSQL bitmapAnd, bitmapOr, bitmap index scan, bitmap heap scan》
https://www.postgresql.org/docs/devel/static/pageinspect.html