PostgreSQL in 与 = any 的SQL语法异同与性能优化
背景
数据库SQL也算一门比较神奇的语言了,比如很多需求可以有不同的SQL来实现:
我之前有输出过一个IN的测试,这里面实际上也涉及到多个语法,实现同一个功能点。测试CASE是1亿 in 100万的多种写法的性能差异。
《HTAP数据库 PostgreSQL 场景与性能测试之 25 - (OLTP) IN , EXISTS 查询》
例如下面三个QUERY的语义就是一样的
select * from tbl where id in (select id from t);
select * from tbl where exists (select 1 from t where t.id=tbl.id);
select * from tbl where id = any (array( select id from t ));
但是不同的SQL,数据库可能会选择不一样的执行计划,并且执行效率可能千差万别。
几个例子
1、创建测试表,模拟1万 IN 100万的操作。
postgres=# create table t(id int);
CREATE TABLE
postgres=# insert into t select generate_series(1,100*10000);
INSERT 0 1000000
2、我们看一看不同写法的执行计划如何:
postgres=# explain select n = any(array(select id from t)) from generate_series(1,10000) as n;
QUERY PLAN
---------------------------------------------------------------------------------
Function Scan on generate_series n (cost=14425.00..14447.50 rows=1000 width=1)
InitPlan 1 (returns $0)
-> Seq Scan on t (cost=0.00..14425.00 rows=1000000 width=4)
(3 rows)
postgres=# explain select n in (select id from t) from generate_series(1,10000) as n;
QUERY PLAN
---------------------------------------------------------------------------------
Function Scan on generate_series n (cost=16925.00..16937.50 rows=1000 width=1)
SubPlan 1
-> Seq Scan on t (cost=0.00..14425.00 rows=1000000 width=4)
(3 rows)
3、你会发现两个语法用了不同的执行计划,一个是InitPlan, 一个是SubPlan.
对于IN的写法,work_mem参数会直接影响性能,work_mem的大小决定了subquery是否要装载到hash table。
postgres=# set work_mem ='1MB';
SET
postgres=# explain select n in (select id from t) from generate_series(1,10000) as n;
QUERY PLAN
--------------------------------------------------------------------------------
Function Scan on generate_series n (cost=0.00..12916012.50 rows=1000 width=1)
SubPlan 1
-> Materialize (cost=0.00..23332.00 rows=1000000 width=4)
-> Seq Scan on t (cost=0.00..14425.00 rows=1000000 width=4)
(4 rows)
postgres=# set work_mem ='100MB';
SET
postgres=# explain select n in (select id from t) from generate_series(1,10000) as n;
QUERY PLAN
---------------------------------------------------------------------------------
Function Scan on generate_series n (cost=16925.00..16937.50 rows=1000 width=1)
SubPlan 1
-> Seq Scan on t (cost=0.00..14425.00 rows=1000000 width=4)
(3 rows)
if (subquery)
{
/* Generate Paths for the ANY subquery; we'll need all rows */
subroot = subquery_planner(root->glob, subquery,
root,
false, 0.0);
/* Isolate the params needed by this specific subplan */
plan_params = root->plan_params;
root->plan_params = NIL;
/* Select best Path and turn it into a Plan */
final_rel = fetch_upper_rel(subroot, UPPERREL_FINAL, NULL);
best_path = final_rel->cheapest_total_path;
plan = create_plan(subroot, best_path);
/* Now we can check if it'll fit in work_mem */
/* XXX can we check this at the Path stage? */
if (subplan_is_hashable(plan))
{
SubPlan *hashplan;
AlternativeSubPlan *asplan;
/* OK, convert to SubPlan format. */
hashplan = castNode(SubPlan,
build_subplan(root, plan, subroot,
plan_params,
ANY_SUBLINK, 0,
newtestexpr,
false, true));
/* Check we got what we expected */
Assert(hashplan->parParam == NIL);
Assert(hashplan->useHashTable);
/* build_subplan won't have filled in paramIds */
hashplan->paramIds = paramIds;
/* Leave it to the executor to decide which plan to use */
asplan = makeNode(AlternativeSubPlan);
asplan->subplans = list_make2(result, hashplan);
result = (Node *) asplan;
}
}
/*
* subplan_is_hashable: can we implement an ANY subplan by hashing?
*/
static bool
subplan_is_hashable(Plan *plan)
{
double subquery_size;
/*
* The estimated size of the subquery result must fit in work_mem. (Note:
* we use heap tuple overhead here even though the tuples will actually be
* stored as MinimalTuples; this provides some fudge factor for hashtable
* overhead.)
*/
subquery_size = plan->plan_rows *
(MAXALIGN(plan->plan_width) + MAXALIGN(SizeofHeapTupleHeader));
if (subquery_size > work_mem * 1024L)
return false;
return true;
}
代码里面注释中,针对in, exists, any的subplan优化器实现也有一些介绍,涉及到性能相关:
实际上exists这里有提到,匹配到第一条就结束,所以评估是否使用哈希表时可能需要的容量很小。
/*
* For an EXISTS subplan, tell lower-level planner to expect that only the
* first tuple will be retrieved. For ALL and ANY subplans, we will be
* able to stop evaluating if the test condition fails or matches, so very
* often not all the tuples will be retrieved; for lack of a better idea,
* specify 50% retrieval. For EXPR, MULTIEXPR, and ROWCOMPARE subplans,
* use default behavior (we're only expecting one row out, anyway).
*
* NOTE: if you change these numbers, also change cost_subplan() in
* path/costsize.c.
*
* XXX If an ANY subplan is uncorrelated, build_subplan may decide to hash
* its output. In that case it would've been better to specify full
* retrieval. At present, however, we can only check hashability after
* we've made the subplan :-(. (Determining whether it'll fit in work_mem
* is the really hard part.) Therefore, we don't want to be too
* optimistic about the percentage of tuples retrieved, for fear of
* selecting a plan that's bad for the materialization case.
*/
in vs = any vs exists性能对比
1、in, work_mem装不下subquery
postgres=# set work_mem ='64kB';
postgres=# explain analyze select n in (select id from t) from generate_series(1,10000) as n;
QUERY PLAN
----------------------------------------------------------------------------------------------------------------------------------
Function Scan on generate_series n (cost=0.00..12916012.50 rows=1000 width=1) (actual time=1.321..11484.646 rows=10000 loops=1)
SubPlan 1
-> Materialize (cost=0.00..23332.00 rows=1000000 width=4) (actual time=0.003..0.619 rows=5000 loops=10000)
-> Seq Scan on t (cost=0.00..14425.00 rows=1000000 width=4) (actual time=0.014..1.800 rows=10000 loops=1)
Planning time: 0.091 ms
Execution time: 11485.905 ms
(6 rows)
2、in, work_mem装下了subquery
postgres=# set work_mem ='64MB';
SET
postgres=# explain (analyze,verbose,timing,costs,buffers) select n in (select id from t) from generate_series(1,10000) as n;
QUERY PLAN
----------------------------------------------------------------------------------------------------------------------------------------------
Function Scan on pg_catalog.generate_series n (cost=16925.00..16937.50 rows=1000 width=1) (actual time=497.142..500.701 rows=10000 loops=1)
Output: (hashed SubPlan 1)
Function Call: generate_series(1, 10000)
Buffers: shared hit=4425
SubPlan 1
-> Seq Scan on public.t (cost=0.00..14425.00 rows=1000000 width=4) (actual time=0.024..124.703 rows=1000000 loops=1)
Output: t.id
Buffers: shared hit=4425
Planning time: 0.085 ms
Execution time: 507.427 ms
(10 rows)
3、= any, work_mem很小无所谓,因为不涉及hashtable
postgres=# set work_mem ='64kB';
SET
postgres=# explain (analyze,verbose,timing,costs,buffers) select n = any(array(select id from t)) from generate_series(1,10000) as n;
QUERY PLAN
----------------------------------------------------------------------------------------------------------------------------------------------
Function Scan on pg_catalog.generate_series n (cost=14425.00..14447.50 rows=1000 width=1) (actual time=233.871..446.120 rows=10000 loops=1)
Output: (n.n = ANY ($0))
Function Call: generate_series(1, 10000)
Buffers: shared hit=4425, temp read=19 written=18
InitPlan 1 (returns $0)
-> Seq Scan on public.t (cost=0.00..14425.00 rows=1000000 width=4) (actual time=0.014..119.976 rows=1000000 loops=1)
Output: t.id
Buffers: shared hit=4425
Planning time: 0.085 ms
Execution time: 447.666 ms
(10 rows)
4、exists, work_mem需求量较少(exists由于优化器在匹配到1条后即刻返回,所以会选择使用索引,性能就非常好。)
postgres=# set work_mem ='64kB';
SET
postgres=# explain (analyze,verbose,timing,costs,buffers) select exists (select 1 from t where t.id=n.n) from generate_series(1,10000) as n;
QUERY PLAN
--------------------------------------------------------------------------------------------------------------------------------------
Function Scan on pg_catalog.generate_series n (cost=0.00..2852.50 rows=1000 width=1) (actual time=1.172..18.893 rows=10000 loops=1)
Output: (SubPlan 1)
Function Call: generate_series(1, 10000)
Buffers: shared hit=40027, temp read=19 written=18
SubPlan 1
-> Index Only Scan using idx_t_1 on public.t (cost=0.42..2.84 rows=1 width=0) (actual time=0.001..0.001 rows=1 loops=10000)
Index Cond: (t.id = n.n)
Heap Fetches: 10000
Buffers: shared hit=40027
Planning time: 0.118 ms
Execution time: 19.902 ms
(11 rows)
postgres=# set work_mem ='64MB';
SET
postgres=# explain (analyze,verbose,timing,costs,buffers) select exists (select 1 from t where t.id=n.n) from generate_series(1,10000) as n;
QUERY PLAN
--------------------------------------------------------------------------------------------------------------------------------------
Function Scan on pg_catalog.generate_series n (cost=0.00..2852.50 rows=1000 width=1) (actual time=0.642..17.635 rows=10000 loops=1)
Output: (alternatives: SubPlan 1 or hashed SubPlan 2)
Function Call: generate_series(1, 10000)
Buffers: shared hit=40027
SubPlan 1
-> Index Only Scan using idx_t_1 on public.t (cost=0.42..2.84 rows=1 width=0) (actual time=0.001..0.001 rows=1 loops=10000)
Index Cond: (t.id = n.n)
Heap Fetches: 10000
Buffers: shared hit=40027
SubPlan 2
-> Seq Scan on public.t t_1 (cost=0.00..14425.00 rows=1000000 width=4) (never executed)
Output: t_1.id
Planning time: 0.129 ms
Execution time: 18.612 ms
(14 rows)
5、如果把索引干掉,exists性能就会下降了,同时性能也和是否使用哈希表有关。
postgres=# drop index idx_t_1;
postgres=# set work_mem ='64kB';
SET
postgres=# explain (analyze,verbose,timing,costs,buffers) select exists (select 1 from t where t.id=n.n) from generate_series(1,10000) as n;
QUERY PLAN
--------------------------------------------------------------------------------------------------------------------------------------------
Function Scan on pg_catalog.generate_series n (cost=0.00..16925010.00 rows=1000 width=1) (actual time=1.072..3036.590 rows=10000 loops=1)
Output: (SubPlan 1)
Function Call: generate_series(1, 10000)
Buffers: shared hit=226260, temp read=19 written=18
SubPlan 1
-> Seq Scan on public.t (cost=0.00..16925.00 rows=1 width=0) (actual time=0.303..0.303 rows=1 loops=10000)
Filter: (t.id = n.n)
Rows Removed by Filter: 5000
Buffers: shared hit=226260
Planning time: 0.087 ms
Execution time: 3037.904 ms
(11 rows)
postgres=# set work_mem ='64MB';
SET
postgres=# explain (analyze,verbose,timing,costs,buffers) select exists (select 1 from t where t.id=n.n) from generate_series(1,10000) as n;
QUERY PLAN
---------------------------------------------------------------------------------------------------------------------------------------------
Function Scan on pg_catalog.generate_series n (cost=0.00..16925010.00 rows=1000 width=1) (actual time=517.150..521.142 rows=10000 loops=1)
Output: (alternatives: SubPlan 1 or hashed SubPlan 2)
Function Call: generate_series(1, 10000)
Buffers: shared hit=4425
SubPlan 1
-> Seq Scan on public.t (cost=0.00..16925.00 rows=1 width=0) (never executed)
Filter: (t.id = n.n)
SubPlan 2
-> Seq Scan on public.t t_1 (cost=0.00..14425.00 rows=1000000 width=4) (actual time=0.027..127.111 rows=1000000 loops=1)
Output: t_1.id
Buffers: shared hit=4425
Planning time: 0.098 ms
Execution time: 527.986 ms
(13 rows)
小结
1、使用= any的写法,不会走subplan,因此不涉及hash table的问题。和work_mem设置大小无关。性能比较暴力,特别是当它不是在subquery里面时,性能贼好。
很多场景都可以使用,例如update limit, delete limit(阅后即焚),又或者就是简单的IN查询需求。
delete from tbl where ctid = any(array( select ctid from tbl where xxx limit xxx ));
update tbl set xxx=xxx where ctid = any(array( select ctid from tbl where xxx limit xxx ));
select * from tbl where id = any (array( query.... ));
推荐指数,五星。
2、exists,由于优化器会默认它只需要搜索到1条命中目标就不搜了,所以优化器评估是否使用hash table时,需要的内存相对较少,即使较小的work_mem也可能使用hashtable。
推荐指数,四星。
3、in (),当出现在subquery中时,优化器评估这个subquery是否要构建哈希TABLE,直接和subquery的大小相关,所以需要较大的work_mem才会选择使用hashtable。
推荐指数,三星。
最后,由于这些SQL语义都相同,在内核优化时,可以考虑做一些QUERY REWRITE,来优化这样的SQL。
这样的话,用户可以不改SQL,就达到提高效率的目的。
感谢为此付出努力的所有PostgreSQL内核开发的小伙伴们。