PostgreSQL 业务数据质量 实时监控 实践
背景
当业务系统越来越庞大后,各个业务线的数据对接会越来越频繁,但是也会引入一个问题。
数据质量。
例如上游是否去掉了一些字段,或者上游数据是否及时触达,又或者上游数据本身是否出现了问题。
通过业务数据质量监控,可以发现这些问题。
而PostgreSQL内置的统计信息能力,已经满足了大部分业务数据质量实时监控场景的需求。
如果需要更加业务话、定制的数据质量监控。PostgreSQL还能支持阅后即焚,流式计算、异步消息等特性,支持实时的数据质量监控。
内置功能,业务数据质量实时监控
PostgreSQL内置统计信息如下:
1、准实时记录数
postgres=# \d pg_class
Table "pg_catalog.pg_class"
Column | Type | Collation | Nullable | Default
---------------------+--------------+-----------+----------+---------
relname | name | | not null | -- 对象名
relnamespace | oid | | not null | -- 对象所属的schema, 对应pg_namespace.oid
relpages | integer | | not null | -- 评估的页数(单位为block_size)
reltuples | real | | not null | -- 评估的记录数
2、准实时的每列的统计信息(空值占比、平均长度、有多少唯一值、高频词、高频词的占比、均匀分布柱状图、线性相关性、高频元素、高频元素占比、高频元素柱状图)
详细的解释如下:
postgres=# \d pg_stats
View "pg_catalog.pg_stats"
Column | Type | Default
------------------------+----------+---------
schemaname | name | -- 对象所属的schema
tablename | name | -- 对象名
attname | name | -- 列名
inherited | boolean | -- 是否为继承表的统计信息(false时表示当前表的统计信息,true时表示包含所有继承表的统计信息)
null_frac | real | -- 该列空值比例
avg_width | integer | -- 该列平均长度
n_distinct | real | -- 该列唯一值个数(-1表示唯一,小于1表示占比,大于等于1表示实际的唯一值个数)
most_common_vals | anyarray | -- 该列高频词
most_common_freqs | real[] | -- 该列高频词对应的出现频率
histogram_bounds | anyarray | -- 该列柱状图(表示隔出的每个BUCKET的记录数均等)
correlation | real | -- 该列存储相关性(-1到1的区间),绝对值越小,存储越离散。小于0表示反向相关,大于0表示正向相关
most_common_elems | anyarray | -- 该列为多值类型(数组)时,多值元素的高频词
most_common_elem_freqs | real[] | -- 多值元素高频词的出现频率
elem_count_histogram | real[] | -- 多值元素的柱状图中,每个区间的非空唯一元素个数
3、准实时的每个表的统计信息,(被全表扫多少次,使用全表扫的方法扫了多少条记录,被索引扫多少次,使用索引扫扫了多少条记录,写入多少条记录,更新多少条记录,有多少DEAD TUPLE等)。
postgres=# \d pg_stat_all_tables
View "pg_catalog.pg_stat_all_tables"
Column | Type | Default
---------------------+--------------------------+---------
relid | oid |
schemaname | name |
relname | name |
seq_scan | bigint | -- 被全表扫多少次
seq_tup_read | bigint | -- 使用全表扫的方法扫了多少条记录
idx_scan | bigint | -- 被索引扫多少次
idx_tup_fetch | bigint | -- 使用索引扫的方法扫了多少条记录
n_tup_ins | bigint | -- 插入了多少记录
n_tup_upd | bigint | -- 更新了多少记录
n_tup_del | bigint | -- 删除了多少记录
n_tup_hot_upd | bigint | -- HOT更新了多少记录
n_live_tup | bigint | -- 多少可见记录
n_dead_tup | bigint | -- 多少垃圾记录
n_mod_since_analyze | bigint |
last_vacuum | timestamp with time zone |
last_autovacuum | timestamp with time zone |
last_analyze | timestamp with time zone |
last_autoanalyze | timestamp with time zone |
vacuum_count | bigint |
autovacuum_count | bigint |
analyze_count | bigint |
autoanalyze_count | bigint |
4、统计信息分析调度策略
PostgreSQL会根据表记录的变化,自动收集统计信息。调度的参数控制如下:
#track_counts = on
#autovacuum = on # Enable autovacuum subprocess? 'on'
autovacuum_naptime = 15s # time between autovacuum runs
#autovacuum_analyze_threshold = 50 # min number of row updates before
# analyze
默认变更 0.1% 后就会自动收集统计信息。
#autovacuum_analyze_scale_factor = 0.1 # fraction of table size before analyze
通过内置的统计信息能得到这些信息:
1、准实时记录数
2、每列(空值占比、平均长度、有多少唯一值、高频词、高频词的占比、均匀分布柱状图、线性相关性、高频元素、高频元素占比、高频元素柱状图)
业务数据质量可以根据以上反馈,实时被发现。
例子
1、创建测试表
create table test(id int primary key, c1 int, c2 int, info text, crt_time timestamp);
create index idx_test_1 on test (crt_time);
2、创建压测脚本
vi test.sql
\set id random(1,10000000)
insert into test values (:id, random()*100, random()*10000, random()::text, now()) on conflict (id) do update set crt_time=now();
3、压测
pgbench -M prepared -n -r -P 1 -f ./test.sql -c 32 -j 32 -T 1200
4、创建清除数据调度,保持30秒的数据。
delete from test where ctid = any (array(
select ctid from test where crt_time < now()-interval '30 second'
));
0.1秒调度一次
psql
delete from test where ctid = any (array(
select ctid from test where crt_time < now()-interval '30 second'
));
\watch 0.1
日志如下
DELETE 18470
Fri 08 Dec 2017 04:31:54 PM CST (every 0.1s)
DELETE 19572
Fri 08 Dec 2017 04:31:55 PM CST (every 0.1s)
DELETE 20159
Fri 08 Dec 2017 04:31:55 PM CST (every 0.1s)
DELETE 20143
Fri 08 Dec 2017 04:31:55 PM CST (every 0.1s)
DELETE 21401
Fri 08 Dec 2017 04:31:55 PM CST (every 0.1s)
DELETE 21956
Fri 08 Dec 2017 04:31:56 PM CST (every 0.1s)
DELETE 19978
Fri 08 Dec 2017 04:31:56 PM CST (every 0.1s)
DELETE 21916
5、实时监测统计信息
每列统计信息
postgres=# select attname,null_frac,avg_width,n_distinct,most_common_vals,most_common_freqs,histogram_bounds,correlation from pg_stats where tablename='test';
attname | id
null_frac | 0
avg_width | 4
n_distinct | -1
most_common_vals |
most_common_freqs |
histogram_bounds | {25,99836,193910,289331,387900,492669,593584,695430,795413,890787,1001849,1100457,1203161,1301537,1400265,1497824,1595610,1702278,1809415,1912946,2006274,2108505,2213771,2314440,2409333,2513067,2616217,2709052,2813209,2916342,3016292,3110554,3210817,3305896,3406145,3512379,3616638,3705990,3804538,3902207,4007939,4119100,4214497,4314986,4405492,4513675,4613327,4704905,4806556,4914360,5020248,5105998,5194904,5292779,5394640,5497986,5600441,5705246,5806209,5905498,6006522,6115688,6212831,6308451,6408320,6516028,6622895,6720613,6817877,6921460,7021999,7118151,7220074,7315355,7413563,7499978,7603076,7695692,7805120,7906168,8000492,8099783,8200918,8292854,8389462,8491879,8589691,8696502,8798076,8892978,8992364,9089390,9192142,9294759,9399562,9497099,9601571,9696437,9800758,9905327,9999758}
correlation | -0.00220302
.....
attname | c2
null_frac | 0
avg_width | 4
n_distinct | 9989
most_common_vals | {3056,6203,1352,1649,1777,3805,7029,420,430,705,1015,1143,2810,3036,3075,3431,3792,4459,4812,5013,5662,5725,5766,6445,6882,7034,7064,7185,7189,7347,8266,8686,8897,9042,9149,9326,9392,9648,9652,9802,63,164,235,453,595,626,672,813,847,1626,1636,1663,1749,1858,2026,2057,2080,2106,2283,2521,2596,2666,2797,2969,3131,3144,3416,3500,3870,3903,3956,3959,4252,4265,4505,4532,4912,5048,5363,5451,5644,5714,5734,5739,5928,5940,5987,6261,6352,6498,6646,6708,6886,6914,7144,7397,7589,7610,7640,7687}
most_common_freqs | {0.000366667,0.000366667,0.000333333,0.000333333,0.000333333,0.000333333,0.000333333,0.0003,0.0003,0.0003,0.0003,0.0003,0.0003,0.0003,0.0003,0.0003,0.0003,0.0003,0.0003,0.0003,0.0003,0.0003,0.0003,0.0003,0.0003,0.0003,0.0003,0.0003,0.0003,0.0003,0.0003,0.0003,0.0003,0.0003,0.0003,0.0003,0.0003,0.0003,0.0003,0.0003,0.000266667,0.000266667,0.000266667,0.000266667,0.000266667,0.000266667,0.000266667,0.000266667,0.000266667,0.000266667,0.000266667,0.000266667,0.000266667,0.000266667,0.000266667,0.000266667,0.000266667,0.000266667,0.000266667,0.000266667,0.000266667,0.000266667,0.000266667,0.000266667,0.000266667,0.000266667,0.000266667,0.000266667,0.000266667,0.000266667,0.000266667,0.000266667,0.000266667,0.000266667,0.000266667,0.000266667,0.000266667,0.000266667,0.000266667,0.000266667,0.000266667,0.000266667,0.000266667,0.000266667,0.000266667,0.000266667,0.000266667,0.000266667,0.000266667,0.000266667,0.000266667,0.000266667,0.000266667,0.000266667,0.000266667,0.000266667,0.000266667,0.000266667,0.000266667,0.000266667}
histogram_bounds | {0,103,201,301,399,495,604,697,802,904,1009,1121,1224,1320,1419,1514,1623,1724,1820,1930,2045,2147,2240,2335,2433,2532,2638,2738,2846,2942,3038,3143,3246,3342,3443,3547,3644,3744,3852,3966,4064,4162,4262,4354,4460,4562,4655,4755,4851,4948,5046,5143,5237,5340,5428,5532,5625,5730,5830,5932,6048,6144,6248,6349,6456,6562,6657,6768,6859,6964,7060,7161,7264,7357,7454,7547,7638,7749,7852,7956,8046,8138,8240,8337,8445,8539,8626,8728,8825,8924,9016,9116,9214,9311,9420,9512,9603,9709,9811,9911,10000}
correlation | -0.00246515
...
attname | crt_time
null_frac | 0
avg_width | 8
n_distinct | -0.931747
most_common_vals | {"2017-12-08 16:32:53.836223","2017-12-08 16:33:02.700473","2017-12-08 16:33:03.226319","2017-12-08 16:33:03.613826","2017-12-08 16:33:08.171908","2017-12-08 16:33:14.727654","2017-12-08 16:33:20.857187","2017-12-08 16:33:22.519299","2017-12-08 16:33:23.388035","2017-12-08 16:33:23.519205"}
most_common_freqs | {6.66667e-05,6.66667e-05,6.66667e-05,6.66667e-05,6.66667e-05,6.66667e-05,6.66667e-05,6.66667e-05,6.66667e-05,6.66667e-05}
histogram_bounds | {"2017-12-08 16:32:50.397367","2017-12-08 16:32:50.987576","2017-12-08 16:32:51.628523","2017-12-08 16:32:52.117421","2017-12-08 16:32:52.610271","2017-12-08 16:32:53.152021","2017-12-08 16:32:53.712685","2017-12-08 16:32:54.3036","2017-12-08 16:32:54.735576","2017-12-08 16:32:55.269238","2017-12-08 16:32:55.691081","2017-12-08 16:32:56.066085","2017-12-08 16:32:56.541396","2017-12-08 16:32:56.865717","2017-12-08 16:32:57.350169","2017-12-08 16:32:57.698694","2017-12-08 16:32:58.062828","2017-12-08 16:32:58.464265","2017-12-08 16:32:58.92354","2017-12-08 16:32:59.27284","2017-12-08 16:32:59.667347","2017-12-08 16:32:59.984229","2017-12-08 16:33:00.310772","2017-12-08 16:33:00.644104","2017-12-08 16:33:00.976184","2017-12-08 16:33:01.366153","2017-12-08 16:33:01.691384","2017-12-08 16:33:02.021643","2017-12-08 16:33:02.382856","2017-12-08 16:33:02.729636","2017-12-08 16:33:03.035666","2017-12-08 16:33:03.508461","2017-12-08 16:33:03.829351","2017-12-08 16:33:04.151727","2017-12-08 16:33:04.4596","2017-12-08 16:33:04.76933","2017-12-08 16:33:05.125295","2017-12-08 16:33:05.537555","2017-12-08 16:33:05.83828","2017-12-08 16:33:06.15387","2017-12-08 16:33:06.545922","2017-12-08 16:33:06.843679","2017-12-08 16:33:07.111281","2017-12-08 16:33:07.414602","2017-12-08 16:33:07.707961","2017-12-08 16:33:08.119891","2017-12-08 16:33:08.388883","2017-12-08 16:33:08.674867","2017-12-08 16:33:08.979336","2017-12-08 16:33:09.339377","2017-12-08 16:33:09.647791","2017-12-08 16:33:09.94157","2017-12-08 16:33:10.232294","2017-12-08 16:33:10.652072","2017-12-08 16:33:10.921087","2017-12-08 16:33:11.17986","2017-12-08 16:33:11.477399","2017-12-08 16:33:11.776529","2017-12-08 16:33:12.110676","2017-12-08 16:33:12.382742","2017-12-08 16:33:12.70362","2017-12-08 16:33:13.020485","2017-12-08 16:33:13.477398","2017-12-08 16:33:13.788134","2017-12-08 16:33:14.072125","2017-12-08 16:33:14.346058","2017-12-08 16:33:14.625692","2017-12-08 16:33:14.889661","2017-12-08 16:33:15.139977","2017-12-08 16:33:15.390732","2017-12-08 16:33:15.697878","2017-12-08 16:33:16.127449","2017-12-08 16:33:16.438117","2017-12-08 16:33:16.725608","2017-12-08 16:33:17.01954","2017-12-08 16:33:17.344609","2017-12-08 16:33:17.602447","2017-12-08 16:33:17.919983","2017-12-08 16:33:18.201386","2017-12-08 16:33:18.444387","2017-12-08 16:33:18.714402","2017-12-08 16:33:19.099394","2017-12-08 16:33:19.402888","2017-12-08 16:33:19.673556","2017-12-08 16:33:19.991907","2017-12-08 16:33:20.23329","2017-12-08 16:33:20.517752","2017-12-08 16:33:20.783084","2017-12-08 16:33:21.032402","2017-12-08 16:33:21.304109","2017-12-08 16:33:21.725122","2017-12-08 16:33:21.998994","2017-12-08 16:33:22.232959","2017-12-08 16:33:22.462384","2017-12-08 16:33:22.729792","2017-12-08 16:33:23.001244","2017-12-08 16:33:23.251215","2017-12-08 16:33:23.534155","2017-12-08 16:33:23.772144","2017-12-08 16:33:24.076088","2017-12-08 16:33:24.471151"}
correlation | 0.760231
记录数
postgres=# select reltuples from pg_class where relname='test';
-[ RECORD 1 ]----------
reltuples | 3.74614e+06
DML活跃度统计信息
postgres=# select * from pg_stat_all_tables where relname ='test';
-[ RECORD 1 ]-------+------------------------------
relid | 591006
schemaname | public
relname | test
seq_scan | 2
seq_tup_read | 0
idx_scan | 28300980
idx_tup_fetch | 24713736
n_tup_ins | 19730476
n_tup_upd | 8567352
n_tup_del | 16143587
n_tup_hot_upd | 0
n_live_tup | 3444573
n_dead_tup | 24748887
n_mod_since_analyze | 547474
last_vacuum |
last_autovacuum | 2017-12-08 16:31:10.820459+08
last_analyze |
last_autoanalyze | 2017-12-08 16:35:16.75293+08
vacuum_count | 0
autovacuum_count | 1
analyze_count | 0
autoanalyze_count | 124
数据清理调度
由于是数据质量监控,所以并不需要保留所有数据,我们通过以下方法,可以高效的清除数据,不影响写入和读取。
《如何根据行号高效率的清除过期数据 - 非分区表,数据老化实践》
单实例,每秒的清除速度约263万行。
如何清除统计信息
postgres=# select pg_stat_reset_single_table_counters('test'::regclass);
如何强制手工收集统计信息
postgres=# analyze verbose test;
INFO: analyzing "public.test"
INFO: "test": scanned 30000 of 238163 pages, containing 560241 live rows and 4294214 dead rows; 30000 rows in sample, 4319958 estimated total rows
ANALYZE
定制化,业务数据质量实时监控
使用阅后即焚的方法,实时监测数据质量。
例子:
《HTAP数据库 PostgreSQL 场景与性能测试之 32 - (OLTP) 高吞吐数据进出(堆存、行扫、无需索引) - 阅后即焚(JSON + 函数流式计算)》
《HTAP数据库 PostgreSQL 场景与性能测试之 31 - (OLTP) 高吞吐数据进出(堆存、行扫、无需索引) - 阅后即焚(读写大吞吐并测)》
《HTAP数据库 PostgreSQL 场景与性能测试之 27 - (OLTP) 物联网 - FEED日志, 流式处理 与 阅后即焚 (CTE)》
《PostgreSQL 异步消息实践 - Feed系统实时监测与响应(如 电商主动服务) - 分钟级到毫秒级的实现》
数据清理调度
由于是数据质量监控,所以并不需要保留所有数据,我们通过以下方法,可以高效的清除数据,不影响写入和读取。
《如何根据行号高效率的清除过期数据 - 非分区表,数据老化实践》
单实例,每秒的清除速度约263万行。
参考
《如何根据行号高效率的清除过期数据 - 非分区表,数据老化实践》
《PostgreSQL 统计信息pg_statistic格式及导入导出dump_stat - 兼容Oracle》
《PostgreSQL pg_stat_ pg_statio_ 统计信息(scan,read,fetch,hit)源码解读》