HybridDB PostgreSQL Sort、Group、distinct 聚合、JOIN 不惧怕数据倾斜的黑科技和原理 - 多阶段聚合
背景
对于分布式系统,数据分布存储,例如随机、哈希分布。
Greenplum数据库支持两种数据分布模式:
1、哈希(指定单个、或多个字段)
2、随机分布(无需指定任何字段)
数据分布存储后,面临一些挑战:
JOIN,排序,group by,distinct。
1、JOIN涉及非分布键字段
2、排序,如何保证输出顺序全局有序
3、group by非分布键字段
4、distinct设计非分布键字段
一些功能不完整的数据库,可能无法支持以上功能。
Greenplum商业化数十年,功能方面非常完善,那么它有什么秘密法宝呢?
( HybridDB for PostgreSQL基于GPDB开源版本改进而来,已包含这个功能。 )
非分布键 JOIN,排序,group by,distinct
1、非分布键 group by
例子,
tbl_ao_col表是c1的分布键,但是我们group by使用了c398字段,因此看看它是怎么做的呢?请看执行计划的解释。
postgres=# explain analyze select c398,count(*),sum(c399),avg(c399),min(c399),max(c399) from tbl_ao_col group by c398;
QUERY PLAN
--------------------------------------------------------------------------------------------------------------------------------------------------------
Gather Motion 48:1 (slice2; segments: 48) (cost=123364.18..123582.28 rows=9693 width=96)
// 返回结果
Rows out: 10001 rows at destination with 120 ms to end, start offset by 1.921 ms.
-> HashAggregate (cost=123364.18..123582.28 rows=202 width=96)
// 重分布后再次聚合。
Group By: tbl_ao_col.c398
Rows out: Avg 208.4 rows x 48 workers. Max 223 rows (seg17) with 0.001 ms to first row, 54 ms to end, start offset by 35 ms.
-> Redistribute Motion 48:48 (slice1; segments: 48) (cost=122928.00..123121.86 rows=202 width=96)
// 第一次聚合后,记录数以及降低到了几千行,因此重分布后即使出现倾斜,关系也不大。
Hash Key: tbl_ao_col.c398
Rows out: Avg 8762.2 rows x 48 workers at destination. Max 9422 rows (seg46) with 31 ms to end, start offset by 63 ms.
-> HashAggregate (cost=122928.00..122928.00 rows=202 width=96)
// 这一步是在segment节点聚合
Group By: tbl_ao_col.c398
Rows out: Avg 8762.2 rows x 48 workers. Max 8835 rows (seg2) with 0.004 ms to first row, 8.004 ms to end, start offset by 82 ms.
-> Append-only Columnar Scan on tbl_ao_col (cost=0.00..107928.00 rows=20834 width=16)
Rows out: 0 rows (seg0) with 28 ms to end, start offset by 64 ms.
Slice statistics:
(slice0) Executor memory: 377K bytes.
(slice1) Executor memory: 1272K bytes avg x 48 workers, 1272K bytes max (seg0).
(slice2) Executor memory: 414K bytes avg x 48 workers, 414K bytes max (seg0).
Statement statistics:
Memory used: 128000K bytes
Settings: optimizer=off
Optimizer status: legacy query optimizer
Total runtime: 122.173 ms
(22 rows)
执行计划解读:
非分布键 GROUP BY,首先会在本地节点group by,然后按GROUP BY字段进行数据重分布,然后再在本地节点GROUP BY,最后返回GROUP BY结果给master节点,返回给用户。
Greenplum会根据group by的字段的distinct值的比例,考虑是直接重分布数据,还是先在本地聚合后再重分布数据(减少重分布的数据量)。
2、非分布键 distinct
例子,
tbl 为 随机分布
postgres=# explain analyze select count(distinct c2) from tbl;
QUERY PLAN
------------------------------------------------------------------------------------------------------------------------------------------------------------
Aggregate (cost=1549462.55..1549462.56 rows=1 width=8)
Rows out: 1 rows with 0.002 ms to first row, 0.645 ms to end, start offset by 1.681 ms.
-> Gather Motion 48:1 (slice2; segments: 48) (cost=1548947.03..1549450.04 rows=1001 width=4)
Rows out: 1001 rows at destination with 498 ms to end, start offset by 1.684 ms.
-> HashAggregate (cost=1548947.03..1548959.55 rows=21 width=4)
Group By: tbl.c2
Rows out: Avg 20.9 rows x 48 workers. Max 31 rows (seg17) with 0.002 ms to first row, 152 ms to end, start offset by 39 ms.
-> Redistribute Motion 48:48 (slice1; segments: 48) (cost=1548912.00..1548932.02 rows=21 width=4)
Hash Key: tbl.c2
Rows out: Avg 1001.0 rows x 48 workers at destination. Max 1488 rows (seg17) with 309 ms to end, start offset by 39 ms.
-> HashAggregate (cost=1548912.00..1548912.00 rows=21 width=4)
Group By: tbl.c2
Rows out: Avg 1001.0 rows x 48 workers. Max 1001 rows (seg0) with 0.006 ms to first row, 271 ms to end, start offset by 42 ms.
-> Append-only Columnar Scan on tbl (cost=0.00..1048912.00 rows=2083334 width=4)
Rows out: 0 rows (seg0) with 25 ms to end, start offset by 42 ms.
Slice statistics:
(slice0) Executor memory: 327K bytes.
(slice1) Executor memory: 764K bytes avg x 48 workers, 764K bytes max (seg0).
(slice2) Executor memory: 292K bytes avg x 48 workers, 292K bytes max (seg0).
Statement statistics:
Memory used: 128000K bytes
Settings: enable_bitmapscan=off; enable_seqscan=off; optimizer=off
Optimizer status: legacy query optimizer
Total runtime: 502.576 ms
(24 rows)
执行计划解读:
非分布键 求distinct,首先会在本地节点hash 聚合,然后按distinct字段进行数据重分布,然后再在本地节点hash 聚合,最后返回结果给master节点,返回给用户。
Greenplum会根据字段的distinct值的比例,考虑是直接重分布数据,还是先在本地聚合后再重分布数据(减少重分布的数据量)。
3、非分布键 distinct + 非分布键 group by
tbl 为 随机分布
postgres=# explain analyze select count(distinct c2) from tbl group by c3;
QUERY PLAN
-----------------------------------------------------------------------------------------------------------------------------------------------------------------
Gather Motion 48:1 (slice2; segments: 48) (cost=1805483.56..1805484.83 rows=101 width=12)
Rows out: 101 rows at destination with 990 ms to end, start offset by 519 ms.
-> HashAggregate (cost=1805483.56..1805484.83 rows=3 width=12)
Group By: partial_aggregation.c3
Rows out: Avg 2.5 rows x 41 workers. Max 4 rows (seg9) with 0.005 ms to first row, 0.284 ms to end, start offset by 577 ms.
-> HashAggregate (cost=1802703.29..1803967.05 rows=2107 width=8)
Group By: tbl.c3, tbl.c2
Rows out: Avg 2465.9 rows x 41 workers. Max 4004 rows (seg9) with 0.001 ms to first row, 260 ms to end, start offset by 577 ms.
-> Redistribute Motion 48:48 (slice1; segments: 48) (cost=1798912.00..1800934.02 rows=2107 width=8)
Hash Key: tbl.c3
Rows out: Avg 118362.0 rows x 41 workers at destination. Max 192192 rows (seg9) with 663 ms to end, start offset by 577 ms.
-> HashAggregate (cost=1798912.00..1798912.00 rows=2107 width=8)
Group By: tbl.c3, tbl.c2
Rows out: Avg 101100.9 rows x 48 workers. Max 101101 rows (seg0) with 0.005 ms to first row, 747 ms to end, start offset by 562 ms.
-> Append-only Columnar Scan on tbl (cost=0.00..1048912.00 rows=2083334 width=8)
Rows out: 0 rows (seg0) with 40 ms to end, start offset by 560 ms.
Slice statistics:
(slice0) Executor memory: 327K bytes.
(slice1) Executor memory: 1117K bytes avg x 48 workers, 1117K bytes max (seg0).
(slice2) Executor memory: 435K bytes avg x 48 workers, 452K bytes max (seg0).
Statement statistics:
Memory used: 128000K bytes
Settings: enable_bitmapscan=off; enable_seqscan=off; optimizer=off
Optimizer status: legacy query optimizer
Total runtime: 1511.120 ms
(25 rows)
distinct和group by都是非分布键,Greenplum分布式执行计划优雅的解决了非分布键group by与distinct数据重分布带来的网络传输的问题。
4、非分布键 join
对于两个表JOIN时,采用了非分布键时,Greenplum会自动对数据进行重分布(或者小表使用广播模式)。
PS
join字段有数据倾斜时,需要注意。
本例为1000万个重复ID作为JOIN字段。JOIN重分布后,会落到一个节点。
postgres=# explain analyze select a.c1,count(*) from a join b on (a.id=b.id) group by a.c1;
QUERY PLAN
-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
Gather Motion 48:1 (slice3; segments: 48) (cost=0.00..2730.45 rows=1 width=12)
Rows out: 1 rows at destination with 7190 ms to end, start offset by 2.357 ms.
-> GroupAggregate (cost=0.00..2730.45 rows=1 width=12)
Group By: a.c1
Rows out: 1 rows (seg22) with 0.001 ms to first row, 0.320 ms to end, start offset by 54 ms.
-> Sort (cost=0.00..2730.44 rows=1 width=12)
Sort Key: a.c1
Rows out: 1 rows (seg22) with 0.001 ms to end, start offset by 54 ms.
Executor memory: 33K bytes avg, 33K bytes max (seg0).
Work_mem used: 33K bytes avg, 33K bytes max (seg0). Workfile: (0 spilling, 0 reused)
-> Redistribute Motion 48:48 (slice2; segments: 48) (cost=0.00..2730.44 rows=1 width=12)
Hash Key: a.c1
Rows out: 1 rows at destination (seg22) with 7138 ms to end, start offset by 54 ms.
-> Result (cost=0.00..2730.44 rows=1 width=12)
Rows out: 1 rows (seg42) with 0.003 ms to end, start offset by 77 ms.
-> GroupAggregate (cost=0.00..2730.44 rows=1 width=12)
Group By: a.c1
Rows out: 1 rows (seg42) with 0.002 ms to first row, 1054 ms to end, start offset by 77 ms.
-> Sort (cost=0.00..2730.44 rows=1 width=4)
Sort Key: a.c1
Rows out: 10000000 rows (seg42) with 0.003 ms to end, start offset by 77 ms.
Executor memory: 1400K bytes avg, 65676K bytes max (seg42).
Work_mem used: 1400K bytes avg, 65676K bytes max (seg42). Workfile: (1 spilling, 0 reused)
Work_mem wanted: 481337K bytes avg, 481337K bytes max (seg42) to lessen workfile I/O affecting 1 workers.
-> Hash Join (cost=0.00..2730.44 rows=1 width=4)
Hash Cond: b.id = a.id
Rows out: 10000000 rows (seg42) with 0.014 ms to first row, 4989 ms to end, start offset by 77 ms.
Executor memory: 6511K bytes avg, 6513K bytes max (seg18).
Work_mem used: 6511K bytes avg, 6513K bytes max (seg18). Workfile: (0 spilling, 0 reused)
-> Redistribute Motion 48:48 (slice1; segments: 48) (cost=0.00..471.72 rows=208130 width=4)
Hash Key: b.id
Rows out: 10000000 rows at destination (seg42) with 0.004 ms to end, start offset by 77 ms.
-> Table Scan on b (cost=0.00..436.27 rows=208130 width=4)
Rows out: Avg 208333.3 rows x 48 workers. Max 208430 rows (seg17) with 4.815 ms to first row, 824 ms to end, start offset by 92 ms.
-> Hash (cost=436.27..436.27 rows=208475 width=8)
Rows in: (No row requested) 0 rows (seg0) with 0 ms to end.
-> Table Scan on a (cost=0.00..436.27 rows=208475 width=8)
Rows out: Avg 208333.3 rows x 48 workers. Max 208401 rows (seg18) with 34 ms to first row, 46 ms to end, start offset by 63 ms.
Slice statistics:
(slice0) Executor memory: 330K bytes.
(slice1) Executor memory: 1129K bytes avg x 48 workers, 1129K bytes max (seg0).
(slice2) * Executor memory: 2139K bytes avg x 48 workers, 66504K bytes max (seg42). Work_mem: 65676K bytes max, 481337K bytes wanted.
(slice3) Executor memory: 372K bytes avg x 48 workers, 388K bytes max (seg22). Work_mem: 33K bytes max.
Statement statistics:
Memory used: 128000K bytes
Memory wanted: 1444908K bytes
Settings: enable_bitmapscan=on; enable_seqscan=on; optimizer=on
Optimizer status: PQO version 1.602
Total runtime: 7193.902 ms
(49 rows)
JOIN两个非分布键
对于两个表JOIN时,采用了非分布键时,Greenplum会自动对数据进行重分布(或者小表使用广播模式)。
postgres=# explain analyze select a.c1,count(*) from a join b on (a.id=b.id) group by a.c1;
QUERY PLAN
---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
Gather Motion 48:1 (slice4; segments: 48) (cost=0.00..990.85 rows=101 width=12)
Rows out: 101 rows at destination with 752 ms to first row, 753 ms to end, start offset by 732 ms.
-> GroupAggregate (cost=0.00..990.85 rows=3 width=12)
Group By: a.c1
Rows out: Avg 2.5 rows x 41 workers. Max 4 rows (seg9) with 746 ms to end, start offset by 738 ms.
-> Sort (cost=0.00..990.85 rows=3 width=12)
Sort Key: a.c1
Rows out: Avg 118.2 rows x 41 workers. Max 192 rows (seg9) with 746 ms to end, start offset by 738 ms.
Executor memory: 58K bytes avg, 58K bytes max (seg0).
Work_mem used: 58K bytes avg, 58K bytes max (seg0). Workfile: (0 spilling, 0 reused)
-> Redistribute Motion 48:48 (slice3; segments: 48) (cost=0.00..990.85 rows=3 width=12)
Hash Key: a.c1
Rows out: Avg 118.2 rows x 41 workers at destination. Max 192 rows (seg9) with 594 ms to first row, 746 ms to end, start offset by 738 ms.
-> Result (cost=0.00..990.85 rows=3 width=12)
Rows out: Avg 101.0 rows x 48 workers. Max 101 rows (seg0) with 675 ms to first row, 676 ms to end, start offset by 740 ms.
-> HashAggregate (cost=0.00..990.85 rows=3 width=12)
Group By: a.c1
Rows out: Avg 101.0 rows x 48 workers. Max 101 rows (seg0) with 675 ms to first row, 676 ms to end, start offset by 740 ms.
Executor memory: 4185K bytes avg, 4185K bytes max (seg0).
-> Hash Join (cost=0.00..964.88 rows=208191 width=4)
Hash Cond: a.id = b.id
Rows out: Avg 208333.3 rows x 48 workers. Max 208401 rows (seg18) with 282 ms to first row, 661 ms to end, start offset by 767 ms.
Executor memory: 4883K bytes avg, 4885K bytes max (seg18).
Work_mem used: 4883K bytes avg, 4885K bytes max (seg18). Workfile: (0 spilling, 0 reused)
(seg18) Hash chain length 1.3 avg, 4 max, using 159471 of 262151 buckets.
-> Redistribute Motion 48:48 (slice1; segments: 48) (cost=0.00..444.59 rows=208378 width=8)
Hash Key: a.id
Rows out: Avg 208333.3 rows x 48 workers at destination. Max 208401 rows (seg18) with 0.112 ms to first row, 104 ms to end, start offset by 1048 ms.
-> Table Scan on a (cost=0.00..436.27 rows=208378 width=8)
Rows out: Avg 208333.3 rows x 48 workers. Max 208422 rows (seg31) with 0.117 ms to first row, 64 ms to end, start offset by 749 ms.
-> Hash (cost=440.42..440.42 rows=208191 width=4)
Rows in: Avg 208333.3 rows x 48 workers. Max 208401 rows (seg18) with 250 ms to end, start offset by 798 ms.
-> Redistribute Motion 48:48 (slice2; segments: 48) (cost=0.00..440.42 rows=208191 width=4)
Hash Key: b.id
Rows out: Avg 208333.3 rows x 48 workers at destination. Max 208401 rows (seg18) with 0.219 ms to first row, 132 ms to end, start offset by 798 ms.
-> Table Scan on b (cost=0.00..436.27 rows=208191 width=4)
Rows out: Avg 208333.3 rows x 48 workers. Max 208388 rows (seg3) with 0.146 ms to first row, 77 ms to end, start offset by 760 ms.
Slice statistics:
(slice0) Executor memory: 313K bytes.
(slice1) Executor memory: 1096K bytes avg x 48 workers, 1096K bytes max (seg0).
(slice2) Executor memory: 1096K bytes avg x 48 workers, 1096K bytes max (seg0).
(slice3) Executor memory: 25518K bytes avg x 48 workers, 25518K bytes max (seg0). Work_mem: 4885K bytes max.
(slice4) Executor memory: 374K bytes avg x 48 workers, 382K bytes max (seg0). Work_mem: 58K bytes max.
Statement statistics:
Memory used: 128000K bytes
Settings: enable_bitmapscan=on; enable_seqscan=on; optimizer=on
Optimizer status: PQO version 1.602
Total runtime: 1486.335 ms
(48 rows)
非分布键 排序
1、merge sort
为了保证全局有序,以及数据排序的效率。
Greenplum使用了merge sort,首先在数据节点本地排序(所有节点并行),然后master节点向segment请求数据,在master节点merge sort合并。
体现了排序的效率。
非分布键 group by 和 distinct 的原理
对于非分布键的分组聚合请求,Greenplum采用了多阶段聚合如下:
第一阶段,在SEGMENT本地聚合。(Greenplum会根据字段的distinct值的比例,考虑是直接重分布数据,还是先在本地聚合后再重分布数据(减少重分布的数据量)。)
第二阶段,根据分组字段,将结果数据重分布。
第三阶段,再次在SEGMENT本地聚合。
第四阶段,返回结果给master,有必要的话master节点调用聚合函数的final func(已经是很少的记录数和运算量)。
非分布键 JOIN 的原理
1、对于JOIN为分布键的表,Greenplum根据表的大小,选择对这张表根据JOIN列重分布(大表),或广播(小表)。
2、重分布完成后,SEGMENT节点并行的执行本地JOIN。
参考
《Greenplum 行存、列存,堆表、AO表的原理和选择》
《分布式DB(Greenplum)中数据倾斜的原因和解法 - 阿里云HybridDB for PostgreSQL最佳实践》
窗口,强制重分布
《日增量万亿+级 实时分析、数据规整 - 阿里云HybridDB for PostgreSQL最佳实践》