HTAP数据库 PostgreSQL 场景与性能测试之 31 - (OLTP) 高吞吐数据进出(堆存、行扫、无需索引) - 阅后即焚(读写大吞吐并测)

2 minute read

背景

PostgreSQL是一个历史悠久的数据库,历史可以追溯到1973年,最早由2014计算机图灵奖得主,关系数据库的鼻祖Michael_Stonebraker 操刀设计,PostgreSQL具备与Oracle类似的功能、性能、架构以及稳定性。

pic

PostgreSQL社区的贡献者众多,来自全球各个行业,历经数年,PostgreSQL 每年发布一个大版本,以持久的生命力和稳定性著称。

2017年10月,PostgreSQL 推出10 版本,携带诸多惊天特性,目标是胜任OLAP和OLTP的HTAP混合场景的需求:

《最受开发者欢迎的HTAP数据库PostgreSQL 10特性》

1、多核并行增强

2、fdw 聚合下推

3、逻辑订阅

4、分区

5、金融级多副本

6、json、jsonb全文检索

7、还有插件化形式存在的特性,如 向量计算、JIT、SQL图计算、SQL流计算、分布式并行计算、时序处理、基因测序、化学分析、图像分析 等。

pic

在各种应用场景中都可以看到PostgreSQL的应用:

pic

PostgreSQL近年来的发展非常迅猛,从知名数据库评测网站dbranking的数据库评分趋势,可以看到PostgreSQL向上发展的趋势:

pic

从每年PostgreSQL中国召开的社区会议,也能看到同样的趋势,参与的公司越来越多,分享的公司越来越多,分享的主题越来越丰富,横跨了 传统企业、互联网、医疗、金融、国企、物流、电商、社交、车联网、共享XX、云、游戏、公共交通、航空、铁路、军工、培训、咨询服务等 行业。

接下来的一系列文章,将给大家介绍PostgreSQL的各种应用场景以及对应的性能指标。

环境

环境部署方法参考:

《PostgreSQL 10 + PostGIS + Sharding(pg_pathman) + MySQL(fdw外部表) on ECS 部署指南(适合新用户)》

阿里云 ECS:56核,224G,1.5TB*2 SSD云盘

操作系统:CentOS 7.4 x64

数据库版本:PostgreSQL 10

PS:ECS的CPU和IO性能相比物理机会打一定的折扣,可以按下降1倍性能来估算。跑物理主机可以按这里测试的性能乘以2来估算。

场景 - 秒杀 - 高并发单点更新 (OLTP)

1、背景

高吞吐的数据写入,消费,通常是MQ的强项和功能点,但是MQ没有数据存储的能力,也没有计算能力。

而PostgreSQL具备了存储、计算能力,同时PG还提供了高吞吐,可靠性。

在需要高吞吐计算的环境,PG是非常不错的选择。

如果业务上需要先进先出的模式,可以加一个时间索引,即可达到这样的效率,写入和消费都在300万行/s以上:

pic

详见:

《HTAP数据库 PostgreSQL 场景与性能测试之 27 - (OLTP) 物联网 - FEED日志, 流式处理 与 阅后即焚 (CTE)》

如果业务上不要求强烈的先进先出,并且处理吞吐足够强悍的话,实际上PG可以不需要索引,因为是堆表,没有索引,写和消费的吞吐可以做到更大。

本文测试的是不需要索引的裸写入和消费吞吐能力(消费、不计算)。

下一篇压测大吞吐下,结合 函数计算和JSON的能力。

2、设计

1、堆表、多表、大吞吐写入

2、堆表、多表、大吞吐消费

同时压测写入和消费。

3、准备测试表

create table t_sensor (sid int, info text, crt_time timestamp) ;  

使用2048个分表。

do language plpgsql $$  
declare  
begin  
  for i in 0..2047 loop  
    execute 'create table t_sensor'||i||'(like t_sensor including all) inherits(t_sensor) '||case when mod(i,2)=0 then ' ' else ' tablespace tbs1' end;  
  end loop;  
end;  
$$;  

4、准备测试函数(可选)

1、批量生成传感器测试数据的函数

CREATE OR REPLACE FUNCTION public.ins_batch(integer,integer)  
 RETURNS void  
 LANGUAGE plpgsql  
 STRICT  
AS $function$  
declare  
  suffix int := mod($1, 2048);  
begin  
  execute 'insert into t_sensor'||suffix||' select '||$1||', 0.1, now() from generate_series(1,'||$2||')';  
end;  
$function$;  

2、批量消费传感器数据的函数,按时间,从最早开始消费。

处理逻辑也可以放到里面,例如预警逻辑(采用PostgreSQL异步消息、CTE语法)。

《PostgreSQL 异步消息实践 - Feed系统实时监测与响应(如 电商主动服务) - 分钟级到毫秒级的跨域》

《PostgreSQL 内存表》

CREATE OR REPLACE FUNCTION public.consume_batch(integer,integer)  
 RETURNS void  
 LANGUAGE plpgsql  
 STRICT  
AS $function$  
declare  
  suffix int := mod($1, 2048);  
begin  
  -- 带流式处理业务逻辑的例句(采用CTE语法):  
  -- with t1 as (delete from t_sensor$suffix where ctid = any(array(select ctid from t_sensor$suffix limit 1000)) returning *)  
  --   select pg_notify('channel_name', 'reason:xxx::::'||row_to_json(t1)) from t1 where ......;  
  --  
  -- 如果有多个判断基准,可以先存入TMP TABLE,再到TMP TABLE处理。  
  -- 使用普通的TMP table或者使用内存TMP TABLE。  
  -- [《PostgreSQL 内存表》](../201608/20160818_01.md)  
  
  -- 本例仅测试不带处理逻辑,只消费的情况,关注消费速度。  
  execute format('delete from t_sensor%s where ctid = any(array(select ctid from t_sensor%s limit %s))', suffix, suffix, $2);  
end;  
$function$;  

5、准备测试数据

6、准备测试脚本

同时压测写入和消费。

1、高吞吐写入测试,100万个传感器,每批1000条。

vi test.sql  
  
\set sid random(1,1000000)  
select ins_batch(:sid, 1000);  

压测

CONNECTS=28  
TIMES=300  
export PGHOST=$PGDATA  
export PGPORT=1999  
export PGUSER=postgres  
export PGPASSWORD=postgres  
export PGDATABASE=postgres  
  
pgbench -M prepared -n -r -f ./test.sql -P 5 -c $CONNECTS -j $CONNECTS -T $TIMES  

2、高吞吐消费测试,100万个传感器,每批1000条。

vi test1.sql  
  
\set sid random(1,1000000)  
select consume_batch(:sid, 1000);  

压测

CONNECTS=28  
TIMES=300  
export PGHOST=$PGDATA  
export PGPORT=1999  
export PGUSER=postgres  
export PGPASSWORD=postgres  
export PGDATABASE=postgres  
  
pgbench -M prepared -n -r -f ./test1.sql -P 5 -c $CONNECTS -j $CONNECTS -T $TIMES  

7、测试

1、高吞吐写入测试,100万个传感器,每批1000条。

transaction type: ./test.sql  
scaling factor: 1  
query mode: prepared  
number of clients: 28  
number of threads: 28  
duration: 300 s  
number of transactions actually processed: 581437  
latency average = 14.446 ms  
latency stddev = 12.231 ms  
tps = 1937.869058 (including connections establishing)  
tps = 1937.999398 (excluding connections establishing)  
script statistics:  
 - statement latencies in milliseconds:  
         0.002  \set sid random(1,1000000)  
        14.445  select ins_batch(:sid, 1000);  

2、高吞吐消费测试,100万个传感器,每批1000条。

transaction type: ./test1.sql  
scaling factor: 1  
query mode: prepared  
number of clients: 28  
number of threads: 28  
duration: 300 s  
number of transactions actually processed: 1254322  
latency average = 6.697 ms  
latency stddev = 10.925 ms  
tps = 4180.897450 (including connections establishing)  
tps = 4181.104213 (excluding connections establishing)  
script statistics:  
 - statement latencies in milliseconds:  
         0.002  \set sid random(1,1000000)  
         6.696  select consume_batch(:sid, 1000);  

一、 TPS

同时压测写入和消费的吞吐如下:

1、数据写入速度: 193万 行/s。
2、数据消费速度: 418万 行/s。

二、 平均响应时间

同时压测写入和消费的吞吐如下:

1、数据写入速度: 14.4 毫秒
2、数据消费速度: 6.7 毫秒

参考

《PostgreSQL、Greenplum 应用案例宝典《如来神掌》 - 目录》

《数据库选型之 - 大象十八摸 - 致 架构师、开发者》

《PostgreSQL 使用 pgbench 测试 sysbench 相关case》

《数据库界的华山论剑 tpc.org》

https://www.postgresql.org/docs/10/static/pgbench.html

Flag Counter

digoal’s 大量PostgreSQL文章入口