HTAP数据库 PostgreSQL 场景与性能测试之 6 - (OLTP) 空间应用 - KNN查询(搜索附近对象,由近到远排序输出)
背景
PostgreSQL是一个历史悠久的数据库,历史可以追溯到1973年,最早由2014计算机图灵奖得主,关系数据库的鼻祖Michael_Stonebraker 操刀设计,PostgreSQL具备与Oracle类似的功能、性能、架构以及稳定性。
PostgreSQL社区的贡献者众多,来自全球各个行业,历经数年,PostgreSQL 每年发布一个大版本,以持久的生命力和稳定性著称。
2017年10月,PostgreSQL 推出10 版本,携带诸多惊天特性,目标是胜任OLAP和OLTP的HTAP混合场景的需求:
《最受开发者欢迎的HTAP数据库PostgreSQL 10特性》
1、多核并行增强
2、fdw 聚合下推
3、逻辑订阅
4、分区
5、金融级多副本
6、json、jsonb全文检索
7、还有插件化形式存在的特性,如 向量计算、JIT、SQL图计算、SQL流计算、分布式并行计算、时序处理、基因测序、化学分析、图像分析 等。
在各种应用场景中都可以看到PostgreSQL的应用:
PostgreSQL近年来的发展非常迅猛,从知名数据库评测网站dbranking的数据库评分趋势,可以看到PostgreSQL向上发展的趋势:
从每年PostgreSQL中国召开的社区会议,也能看到同样的趋势,参与的公司越来越多,分享的公司越来越多,分享的主题越来越丰富,横跨了 传统企业、互联网、医疗、金融、国企、物流、电商、社交、车联网、共享XX、云、游戏、公共交通、航空、铁路、军工、培训、咨询服务等 行业。
接下来的一系列文章,将给大家介绍PostgreSQL的各种应用场景以及对应的性能指标。
环境
环境部署方法参考:
《PostgreSQL 10 + PostGIS + Sharding(pg_pathman) + MySQL(fdw外部表) on ECS 部署指南(适合新用户)》
阿里云 ECS:56核,224G,1.5TB*2 SSD云盘
。
操作系统:CentOS 7.4 x64
数据库版本:PostgreSQL 10
PS:ECS的CPU和IO性能相比物理机会打一定的折扣,可以按下降1倍性能来估算。跑物理主机可以按这里测试的性能乘以2来估算。
场景 - 空间应用 - KNN查询(搜索附近对象,由近到远排序输出) (OLTP)
1、背景
在社交业务、O2O业务、空间应用中,搜索附近的对象是非常常见的需求,例如:
1、微信的摇一摇,
2、探探的搜索附近的异性,
3、导航软件中搜索附近的加油站、餐馆、酒店等。
4、打车软件,搜索附近的出租车。
5、公安系统,搜索某个多边形内的对象。
6、团圆系统,搜索某个点附近的所有对象。
我们生活的周围有非常多的应用都有附近搜索的需求。
2、设计
一张空间表,10亿个经纬点,输入一个随机点,搜索附近5公里的人,按近到远排序输出前1、100条。
10亿个点已经可以包含非常丰富的信息,建筑物、用户、汽车、小区、商场、加油站。。。等。
3、准备测试表
create extension postgis;
create table t_pos(
id int primary key,
pos geometry
);
4、准备测试函数(可选)
create or replace function ff(geometry, float8, int) returns setof record as $$
declare
v_rec record;
v_limit int := $3;
begin
set local enable_seqscan=off; -- 强制索引, 扫描行数够就退出.
for v_rec in
select *,
st_distancespheroid(pos, $1, 'SPHEROID["WGS84",6378137,298.257223563]') as dist
from t_pos
order by pos <-> $1
loop
if v_limit <=0 then
-- raise notice '已经取足数据';
return;
end if;
if v_rec.dist > $2 then
-- raise notice '满足条件的点已输出完毕';
return;
else
-- raise notice 'do someting, v_rec:%', v_rec;
return next v_rec;
end if;
v_limit := v_limit -1;
end loop;
end;
$$ language plpgsql strict volatile;
5、准备测试数据
insert into t_pos
select * from (
select id,
ST_SetSRID(
ST_Point( round((random()*(135.085831-73.406586)+73.406586)::numeric,6),
round((random()*(53.880950-3.408477)+3.408477)::numeric,6)
),
4326
) as pos
from generate_series(1,1000000000) t(id)
) t
order by st_geohash(pos,15);
create index idx_t_pos_1 on t_pos using gist(pos);
6、准备测试脚本
1、指定任意一个点,由近到远返回5公里内的100个点。
vi test1.sql
\set x random(73,135)
\set y random(3,53)
select * from ff(st_setsrid(st_makepoint(:x,:y),4326), 5000, 100) as t(id int, pos geometry, dist float8);
2、指定任意一个点,由近到远返回附近的100个点。
vi test2.sql
\set x random(73,135)
\set y random(3,53)
select *, st_distancespheroid(pos, st_setsrid(st_makepoint(:x,:y),4326), 'SPHEROID["WGS84",6378137,298.257223563]') as dist from t_pos order by pos <-> st_setsrid(st_makepoint(:x,:y),4326) limit 100;
3、指定任意一个点,由近到远返回5公里内的1个点。
vi test3.sql
\set x random(73,135)
\set y random(3,53)
select * from ff(st_setsrid(st_makepoint(:x,:y),4326), 5000, 1) as t(id int, pos geometry, dist float8);
4、指定任意一个点,由近到远返回附近的1个点。
vi test4.sql
\set x random(73,135)
\set y random(3,53)
select *, st_distancespheroid(pos, st_setsrid(st_makepoint(:x,:y),4326), 'SPHEROID["WGS84",6378137,298.257223563]') as dist from t_pos order by pos <-> st_setsrid(st_makepoint(:x,:y),4326) limit 1;
7、测试
CONNECTS=112
TIMES=120
export PGHOST=$PGDATA
export PGPORT=1999
export PGUSER=postgres
export PGPASSWORD=postgres
export PGDATABASE=postgres
pgbench -M prepared -n -r -f ./test1.sql -P 5 -c $CONNECTS -j $CONNECTS -T $TIMES
pgbench -M prepared -n -r -f ./test2.sql -P 5 -c $CONNECTS -j $CONNECTS -T $TIMES
pgbench -M prepared -n -r -f ./test3.sql -P 5 -c $CONNECTS -j $CONNECTS -T $TIMES
pgbench -M prepared -n -r -f ./test4.sql -P 5 -c $CONNECTS -j $CONNECTS -T $TIMES
8、测试结果
1、指定任意一个点,由近到远返回5公里内的100个点。
transaction type: ./test.sql
scaling factor: 1
query mode: prepared
number of clients: 112
number of threads: 112
duration: 120 s
number of transactions actually processed: 1716069
latency average = 7.830 ms
latency stddev = 5.340 ms
tps = 14255.242120 (including connections establishing)
tps = 14258.960645 (excluding connections establishing)
script statistics:
- statement latencies in milliseconds:
0.003 \set x random(73,135)
0.001 \set y random(3,53)
7.828 select * from ff(st_setsrid(st_makepoint(:x,:y),4326), 5000, 100) as t(id int, pos geometry, dist float8);
2、指定任意一个点,由近到远返回5公里内的1个点。
transaction type: ./test.sql
scaling factor: 1
query mode: prepared
number of clients: 112
number of threads: 112
duration: 120 s
number of transactions actually processed: 12802519
latency average = 1.049 ms
latency stddev = 0.948 ms
tps = 106443.247555 (including connections establishing)
tps = 106471.622064 (excluding connections establishing)
script statistics:
- statement latencies in milliseconds:
0.002 \set x random(73,135)
0.001 \set y random(3,53)
1.048 select * from ff(st_setsrid(st_makepoint(:x,:y),4326), 5000, 1) as t(id int, pos geometry, dist float8);
3、指定任意一个点,由近到远返回附近的100个点。
transaction type: ./test.sql
scaling factor: 1
query mode: prepared
number of clients: 112
number of threads: 112
duration: 120 s
number of transactions actually processed: 4259777
latency average = 3.154 ms
latency stddev = 1.730 ms
tps = 35485.626794 (including connections establishing)
tps = 35493.479127 (excluding connections establishing)
script statistics:
- statement latencies in milliseconds:
0.002 \set x random(73,135)
0.001 \set y random(3,53)
3.152 select *, st_distancespheroid(pos, st_setsrid(st_makepoint(:x,:y),4326), 'SPHEROID["WGS84",6378137,298.257223563]') as dist from t_pos order by pos <-> st_setsrid(st_makepoint(:x,:y),4326) limit 100;
4、指定任意一个点,由近到远返回附近的1个点。
transaction type: ./test.sql
scaling factor: 1
query mode: prepared
number of clients: 112
number of threads: 112
duration: 120 s
number of transactions actually processed: 16396606
latency average = 0.819 ms
latency stddev = 0.766 ms
tps = 136561.188639 (including connections establishing)
tps = 136600.851378 (excluding connections establishing)
script statistics:
- statement latencies in milliseconds:
0.002 \set x random(73,135)
0.001 \set y random(3,53)
0.818 select *, st_distancespheroid(pos, st_setsrid(st_makepoint(:x,:y),4326), 'SPHEROID["WGS84",6378137,298.257223563]') as dist from t_pos order by pos <-> st_setsrid(st_makepoint(:x,:y),4326) limit 1;
TPS
1、指定任意一个点,由近到远返回5公里内的100个点。
14258
2、指定任意一个点,由近到远返回附近的100个点。
35493
3、指定任意一个点,由近到远返回5公里内的1个点。
106471
4、指定任意一个点,由近到远返回附近的1个点。
136600
平均响应时间
1、指定任意一个点,由近到远返回5公里内的100个点。
7.830 毫秒
2、指定任意一个点,由近到远返回附近的100个点。
3.154 毫秒
3、指定任意一个点,由近到远返回5公里内的1个点。
1.049 毫秒
4、指定任意一个点,由近到远返回附近的1个点。
0.819 毫秒
参考
《PostgreSQL、Greenplum 应用案例宝典《如来神掌》 - 目录》
《PostgreSQL 使用 pgbench 测试 sysbench 相关case》
https://www.postgresql.org/docs/10/static/pgbench.html