PostgreSQL 重复 数据清洗 优化教程
背景
重复数据清洗是一个比较常见的业务需求,比如有些数据库不支持唯一约束,或者程序设计之初可能没有考虑到需要在某些列上面加唯一约束,导致应用在上线一段时间后,产生了一些重复的数据。
那么重复数据的清洗需求就来了。
有哪些清洗手段,如何做到高效的清洗呢?
一个小小的应用场景,带出了10项数据库技术点,听我道来。
重复数据清洗手段
比如一个表,有几个字段本来应该是唯一的,产生了重复值,现在给你一个规则,保留重复值中的一条,其他删掉。
例子
postgres=# create table tbl_dup(
id serial8,
sid int,
crt_time timestamp,
mdf_time timestamp,
c1 text default md5(random()::text),
c2 text default md5(random()::text),
c3 text default md5(random()::text),
c4 text default md5(random()::text),
c5 text default md5(random()::text),
c6 text default md5(random()::text),
c7 text default md5(random()::text),
c8 text default md5(random()::text)
);
删除重复的 (sid + crt_time) 组合,并保留重复值中,mdf_time最大的一条。
生成测试数据100万条,1/10 的重复概率,同时为了避免重复数据在一个数据块中,每跳跃500条生成一条重复值。
就生成测试数据 ,是不是觉得已经很炫酷了呢?一条SQL就造了一批这样的数据。
insert into tbl_dup (sid, crt_time, mdf_time)
select
case when mod(id,11)=0 then id+500 else id end,
case when mod(id,11)=0 then now()+(''||id+500||' s')::interval else now()+(''||id||' s')::interval end,
clock_timestamp()
from generate_series(1,1000000) t(id);
验证, 重复记录的ctid不在同一个数据块中。
验证方法是不是很酷呢?用了窗口查询。
postgres=# select * from (select ctid,sid,crt_time,mdf_time, count(*) over(partition by sid,crt_time) as cnt from tbl_dup) t where t.cnt>=2;
ctid | sid | crt_time | mdf_time | cnt
------------+--------+----------------------------+----------------------------+-----
(0,11) | 511 | 2016-12-29 17:42:13.935348 | 2016-12-29 17:33:43.092625 | 2
(20,11) | 511 | 2016-12-29 17:42:13.935348 | 2016-12-29 17:33:43.102726 | 2
(20,22) | 522 | 2016-12-29 17:42:24.935348 | 2016-12-29 17:33:43.102927 | 2
(0,22) | 522 | 2016-12-29 17:42:24.935348 | 2016-12-29 17:33:43.09283 | 2
(21,8) | 533 | 2016-12-29 17:42:35.935348 | 2016-12-29 17:33:43.103155 | 2
(1,8) | 533 | 2016-12-29 17:42:35.935348 | 2016-12-29 17:33:43.093191 | 2
(21,19) | 544 | 2016-12-29 17:42:46.935348 | 2016-12-29 17:33:43.103375 | 2
(1,19) | 544 | 2016-12-29 17:42:46.935348 | 2016-12-29 17:33:43.093413 | 2
....
包含重复的值大概这么多
postgres=# select count(*) from (select * from (select ctid,sid,crt_time,mdf_time, count(*) over(partition by sid,crt_time) as cnt from tbl_dup) t where t.cnt=2) t;
count
--------
181726
(1 row)
Time: 1690.709 ms
你如果觉得这个还挺快的,偷偷告诉你测试环境CPU型号。
Intel(R) Xeon(R) CPU E5-2630 0 @ 2.30GHz
接下来开始去重了
方法1, 插入法
将去重后的结果插入一张新的表中,耗时5.8秒
create table tbl_uniq(like tbl_dup including all);
insert into tbl_uniq (id,sid,crt_time,mdf_time,c1,c2,c3,c4,c5,c6,c7,c8)
select id,sid,crt_time,mdf_time,c1,c2,c3,c4,c5,c6,c7,c8 from
(select row_number() over(partition by sid,crt_time order by mdf_time desc) as rn, * from tbl_dup) t
where t.rn=1;
INSERT 0 909137
Time: 5854.349 ms
分析优化空间,显示排序可以优化
postgres=# explain (analyze,verbose,timing,costs,buffers) insert into tbl_uniq (id,sid,crt_time,mdf_time,c1,c2,c3,c4,c5,c6,c7,c8)
select id,sid,crt_time,mdf_time,c1,c2,c3,c4,c5,c6,c7,c8 from
(select row_number() over(partition by sid,crt_time order by mdf_time desc) as rn, * from tbl_dup) t
where t.rn=1;
QUERY PLAN
----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
Insert on public.tbl_uniq (cost=423098.84..458098.84 rows=5000 width=292) (actual time=5994.723..5994.723 rows=0 loops=1)
Buffers: shared hit=1021856 read=36376 dirtied=36375, temp read=37391 written=37391
-> Subquery Scan on t (cost=423098.84..458098.84 rows=5000 width=292) (actual time=1715.278..3620.269 rows=909137 loops=1)
Output: t.id, t.sid, t.crt_time, t.mdf_time, t.c1, t.c2, t.c3, t.c4, t.c5, t.c6, t.c7, t.c8
Filter: (t.rn = 1)
Rows Removed by Filter: 90863
Buffers: shared hit=40000, temp read=37391 written=37391
-> WindowAgg (cost=423098.84..445598.84 rows=1000000 width=300) (actual time=1715.276..3345.392 rows=1000000 loops=1)
Output: row_number() OVER (?), tbl_dup.id, tbl_dup.sid, tbl_dup.crt_time, tbl_dup.mdf_time, tbl_dup.c1, tbl_dup.c2, tbl_dup.c3, tbl_dup.c4, tbl_dup.c5, tbl_dup.c6, tbl_dup.c7, tbl_dup.c8
Buffers: shared hit=40000, temp read=37391 written=37391
-> Sort (cost=423098.84..425598.84 rows=1000000 width=292) (actual time=1715.263..2174.426 rows=1000000 loops=1)
Output: tbl_dup.sid, tbl_dup.crt_time, tbl_dup.mdf_time, tbl_dup.id, tbl_dup.c1, tbl_dup.c2, tbl_dup.c3, tbl_dup.c4, tbl_dup.c5, tbl_dup.c6, tbl_dup.c7, tbl_dup.c8
Sort Key: tbl_dup.sid, tbl_dup.crt_time, tbl_dup.mdf_time DESC
Sort Method: external sort Disk: 299128kB
Buffers: shared hit=40000, temp read=37391 written=37391
-> Seq Scan on public.tbl_dup (cost=0.00..50000.00 rows=1000000 width=292) (actual time=0.012..398.007 rows=1000000 loops=1)
Output: tbl_dup.sid, tbl_dup.crt_time, tbl_dup.mdf_time, tbl_dup.id, tbl_dup.c1, tbl_dup.c2, tbl_dup.c3, tbl_dup.c4, tbl_dup.c5, tbl_dup.c6, tbl_dup.c7, tbl_dup.c8
Buffers: shared hit=40000
Planning time: 0.174 ms
Execution time: 6120.921 ms
(20 rows)
优化1
索引,消除排序,优化后只需要3.9秒
对于在线业务,PostgreSQL可以使用并行CONCURRENTLY创建索引,不会堵塞DML。
postgres=# create index CONCURRENTLY idx_tbl_dup on tbl_dup(sid,crt_time,mdf_time desc);
CREATE INDEX
Time: 765.426 ms
postgres=# truncate tbl_uniq;
TRUNCATE TABLE
Time: 208.808 ms
postgres=# insert into tbl_uniq (id,sid,crt_time,mdf_time,c1,c2,c3,c4,c5,c6,c7,c8)
select id,sid,crt_time,mdf_time,c1,c2,c3,c4,c5,c6,c7,c8 from
(select row_number() over(partition by sid,crt_time order by mdf_time desc) as rn, * from tbl_dup) t
where t.rn=1;
INSERT 0 909137
Time: 3978.425 ms
postgres=# explain (analyze,verbose,timing,costs,buffers) insert into tbl_uniq (id,sid,crt_time,mdf_time,c1,c2,c3,c4,c5,c6,c7,c8)
select id,sid,crt_time,mdf_time,c1,c2,c3,c4,c5,c6,c7,c8 from
(select row_number() over(partition by sid,crt_time order by mdf_time desc) as rn, * from tbl_dup) t
where t.rn=1;
QUERY PLAN
----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
Insert on public.tbl_uniq (cost=0.42..159846.13 rows=5000 width=292) (actual time=4791.360..4791.360 rows=0 loops=1)
Buffers: shared hit=1199971 read=41303 dirtied=36374
-> Subquery Scan on t (cost=0.42..159846.13 rows=5000 width=292) (actual time=0.061..2177.768 rows=909137 loops=1)
Output: t.id, t.sid, t.crt_time, t.mdf_time, t.c1, t.c2, t.c3, t.c4, t.c5, t.c6, t.c7, t.c8
Filter: (t.rn = 1)
Rows Removed by Filter: 90863
Buffers: shared hit=218112 read=4929
-> WindowAgg (cost=0.42..147346.13 rows=1000000 width=300) (actual time=0.060..1901.174 rows=1000000 loops=1)
Output: row_number() OVER (?), tbl_dup.id, tbl_dup.sid, tbl_dup.crt_time, tbl_dup.mdf_time, tbl_dup.c1, tbl_dup.c2, tbl_dup.c3, tbl_dup.c4, tbl_dup.c5, tbl_dup.c6, tbl_dup.c7, tbl_dup.c8
Buffers: shared hit=218112 read=4929
-> Index Scan using idx_tbl_dup on public.tbl_dup (cost=0.42..127346.13 rows=1000000 width=292) (actual time=0.051..601.249 rows=1000000 loops=1)
Output: tbl_dup.id, tbl_dup.sid, tbl_dup.crt_time, tbl_dup.mdf_time, tbl_dup.c1, tbl_dup.c2, tbl_dup.c3, tbl_dup.c4, tbl_dup.c5, tbl_dup.c6, tbl_dup.c7, tbl_dup.c8
Buffers: shared hit=218112 read=4929
Planning time: 0.304 ms
Execution time: 4834.392 ms
(15 rows)
Time: 4835.484 ms
优化2
递归查询、递归收敛
有几个CASE用这种方法提升了几百倍性能
《时序数据合并场景加速分析和实现 - 复合索引,窗口分组查询加速,变态递归加速》
《distinct xx和count(distinct xx)的变态递归优化方法 - 索引收敛(skip scan)扫描》
《用PostgreSQL找回618秒逝去的青春 - 递归收敛优化》
当重复值很多时,可以使用此法,效果非常好
with recursive skip as (
(
select tbl_dup as tbl_dup from tbl_dup where (sid,crt_time,mdf_time) in (select sid,crt_time,mdf_time from tbl_dup order by sid,crt_time,mdf_time desc limit 1)
)
union all
(
select (
select tbl_dup from tbl_dup where (sid,crt_time,mdf_time) in (select sid,crt_time,mdf_time from tbl_dup t where t.sid>(s.tbl_dup).sid or (t.sid=(s.tbl_dup).sid and t.crt_time>(s.tbl_dup).crt_time) and t.sid is not null order by t.sid,t.crt_time,t.mdf_time desc limit 1)
) from skip s where (s.tbl_dup).sid is not null
) -- 这里的where (s.tbl_dup).sid is not null 一定要加, 否则就死循环了.
)
select (t.tbl_dup).sid, (t.tbl_dup).crt_time from skip t where t.* is not null;
有UK时这样用
with recursive skip as (
(
select tbl_dup as tbl_dup from tbl_dup where (id) in (select id from tbl_dup order by sid,crt_time,mdf_time desc limit 1)
)
union all
(
select (
select tbl_dup from tbl_dup where id in (select id from tbl_dup t where t.sid>(s.tbl_dup).sid or (t.sid=(s.tbl_dup).sid and t.crt_time>(s.tbl_dup).crt_time) and t.id is not null order by t.sid,t.crt_time,t.mdf_time desc limit 1)
) from skip s where (s.tbl_dup).id is not null
) -- 这里的where (s.tbl_dup).id is not null 一定要加, 否则就死循环了.
)
select (t.tbl_dup).sid, (t.tbl_dup).crt_time from skip t where t.* is not null;
方法3, 删除法
导入需要处理的时,新增一个row_number字段,并建立where row_number<>1的partial index.
删除时删除此部分记录即可,2秒搞定需求。
postgres=# delete from tbl_dup where (sid,crt_time,mdf_time) in (select sid,crt_time,mdf_time from (select sid,crt_time,mdf_time,row_number() over(partition by sid,crt_time order by mdf_time desc) as rn from tbl_dup) t where t.rn<>1);
DELETE 90863
Time: 2079.588 ms
postgres=# explain delete from tbl_dup where (sid,crt_time,mdf_time) in (select sid,crt_time,mdf_time from (select sid,crt_time,mdf_time,row_number() over(partition by sid,crt_time order by mdf_time desc) as rn from tbl_dup) t where t.rn<>1);
QUERY PLAN
------------------------------------------------------------------------------------------------------------------------------------
Delete on tbl_dup (cost=187947.63..283491.75 rows=995000 width=50)
-> Hash Semi Join (cost=187947.63..283491.75 rows=995000 width=50)
Hash Cond: ((tbl_dup.sid = t.sid) AND (tbl_dup.crt_time = t.crt_time) AND (tbl_dup.mdf_time = t.mdf_time))
-> Seq Scan on tbl_dup (cost=0.00..50000.00 rows=1000000 width=26)
-> Hash (cost=159846.13..159846.13 rows=995000 width=64)
-> Subquery Scan on t (cost=0.42..159846.13 rows=995000 width=64)
Filter: (t.rn <> 1)
-> WindowAgg (cost=0.42..147346.13 rows=1000000 width=28)
-> Index Only Scan using idx_tbl_dup on tbl_dup tbl_dup_1 (cost=0.42..127346.13 rows=1000000 width=20)
(9 rows)
验证
postgres=# select count(*) , count(distinct (sid,crt_time)) from tbl_dup;
count | count
--------+--------
909137 | 909137
(1 row)
一气呵成的方法
假如重复数据来自文本,从文本去重后,导入数据库,再导出文本。
怎么听起来像把数据库当成了文本处理工具在用呢?
没关系,反正目的就是要快速。
怎么一气呵成呢?
首先是文件外部表,其次是COPY管道,一气呵成。
https://www.postgresql.org/docs/9.6/static/file-fdw.html
postgres=# create extension file_fdw;
CREATE EXTENSION
postgres=# copy tbl_dup to '/home/digoal/tbl_dup.csv' ;
COPY 1000000
postgres=# create server file foreign data wrapper file_fdw;
CREATE SERVER
CREATE FOREIGN TABLE ft_tbl_dup (
id serial8,
sid int,
crt_time timestamp,
mdf_time timestamp,
c1 text default md5(random()::text),
c2 text default md5(random()::text),
c3 text default md5(random()::text),
c4 text default md5(random()::text),
c5 text default md5(random()::text),
c6 text default md5(random()::text),
c7 text default md5(random()::text),
c8 text default md5(random()::text)
) server file options (filename '/home/digoal/tbl_dup.csv' );
postgres=# copy (select id,sid,crt_time,mdf_time,c1,c2,c3,c4,c5,c6,c7,c8 from
(select row_number() over(partition by sid,crt_time order by mdf_time desc) as rn, * from ft_tbl_dup) t
where t.rn=1) to '/home/digoal/tbl_uniq.csv';
COPY 909137
Time: 10973.289 ms
很显然速度还不够惊人,所以接下来看优化手段。
并行处理优化手段
拆分成多个文件,并行处理,耗时降低到800毫秒左右。注意这没有结束,最后还需要merge sort对全局去重。
split -l 50000 tbl_dup.csv load_test_
for i in `ls load_test_??`
do
psql <<EOF &
drop foreign table "ft_$i";
CREATE FOREIGN TABLE "ft_$i" (
id serial8,
sid int,
crt_time timestamp,
mdf_time timestamp,
c1 text default md5(random()::text),
c2 text default md5(random()::text),
c3 text default md5(random()::text),
c4 text default md5(random()::text),
c5 text default md5(random()::text),
c6 text default md5(random()::text),
c7 text default md5(random()::text),
c8 text default md5(random()::text)
) server file options (filename '/home/digoal/$i' );
\timing
copy (select id,sid,crt_time,mdf_time,c1,c2,c3,c4,c5,c6,c7,c8 from
(select row_number() over(partition by sid,crt_time order by mdf_time desc) as rn, * from "ft_$i") t
where t.rn=1) to '/home/digoal/uniq_csv.$i';
EOF
done
速度提升到了1秒以内完成,还可以继续提高并行度,总耗时降低到200毫秒左右。
COPY 45500
Time: 764.978 ms
COPY 45500
Time: 683.255 ms
COPY 45500
Time: 775.625 ms
COPY 45500
Time: 733.227 ms
COPY 45500
Time: 750.978 ms
COPY 45500
Time: 766.984 ms
COPY 45500
Time: 796.796 ms
COPY 45500
Time: 797.016 ms
COPY 45500
Time: 881.682 ms
COPY 45500
Time: 794.691 ms
COPY 45500
Time: 812.932 ms
COPY 45500
Time: 921.792 ms
COPY 45500
Time: 890.095 ms
COPY 45500
Time: 845.815 ms
COPY 45500
Time: 867.456 ms
COPY 45500
Time: 874.979 ms
COPY 45500
Time: 882.578 ms
COPY 45500
Time: 880.131 ms
COPY 45500
Time: 901.515 ms
COPY 45500
Time: 904.857 ms
注意这没有结束,最后还需要merge sort对全局去重,所以单纯的并行是不够的。
接下来看下面的方法。
一气呵成方法2
并行导入单表处理后倒出,中间结果不需要保存,所以使用UNLOGGED TABLE
CREATE unlogged TABLE tmp (
id serial8,
sid int,
crt_time timestamp,
mdf_time timestamp,
c1 text default md5(random()::text),
c2 text default md5(random()::text),
c3 text default md5(random()::text),
c4 text default md5(random()::text),
c5 text default md5(random()::text),
c6 text default md5(random()::text),
c7 text default md5(random()::text),
c8 text default md5(random()::text)
) with (autovacuum_enabled=off, toast.autovacuum_enabled=off);
create index idx_tmp_1 on tmp (sid,crt_time,mdf_time desc);
split -l 20000 tbl_dup.csv load_test_
date +%F%T.%N
for i in `ls load_test_??`
do
psql <<EOF &
truncate tmp;
copy tmp from '/home/digoal/$i';
EOF
done
for ((i=1;i>0;i=1))
do
sleep 0.0001
cnt=`ps -ewf|grep -v grep|grep -c psql`
if [ $cnt -eq 0 ]; then
break
fi
done
psql <<EOF
copy (select id,sid,crt_time,mdf_time,c1,c2,c3,c4,c5,c6,c7,c8 from
(select row_number() over(partition by sid,crt_time order by mdf_time desc) as rn, * from tmp) t
where t.rn=1) to '/dev/shm/tbl_uniq.csv';
EOF
date +%F%T.%N
2016-12-3000:59:42.309126109
2016-12-3000:59:47.589134168
5.28秒。
并行的方法, 流处理 之 事件处理
CREATE stream stream_dup (
id int8,
sid int,
crt_time timestamp,
mdf_time timestamp,
c1 text default md5(random()::text),
c2 text default md5(random()::text),
c3 text default md5(random()::text),
c4 text default md5(random()::text),
c5 text default md5(random()::text),
c6 text default md5(random()::text),
c7 text default md5(random()::text),
c8 text default md5(random()::text)
) ;
CREATE unlogged table tbl_uniq (
id serial8,
sid int,
crt_time timestamp,
mdf_time timestamp,
c1 text default md5(random()::text),
c2 text default md5(random()::text),
c3 text default md5(random()::text),
c4 text default md5(random()::text),
c5 text default md5(random()::text),
c6 text default md5(random()::text),
c7 text default md5(random()::text),
c8 text default md5(random()::text) ,
unique (sid,crt_time)
) with (autovacuum_enabled=off, toast.autovacuum_enabled=off);
create or replace function filter() returns trigger as $$
declare
begin
insert into tbl_uniq values (NEW.id,NEW.sid, NEW.crt_time,NEW.mdf_time,NEW.c1,NEW.c2,NEW.c3,NEW.c4,NEW.c5,NEW.c6,NEW.c7,NEW.c8) on conflict (sid,crt_time) do update set
id=excluded.id, mdf_time=excluded.mdf_time, c1=excluded.c1,c2=excluded.c2,c3=excluded.c3,c4=excluded.c4,c5=excluded.c5,c6=excluded.c6,c7=excluded.c7,c8=excluded.c8
where tbl_uniq.mdf_time<excluded.mdf_time;
return new;
end;
$$ language plpgsql strict;
CREATE CONTINUOUS TRANSFORM ct AS
SELECT id::int8,sid::int,crt_time::timestamp,mdf_time::timestamp,c1::text,c2::text,c3::text,c4::text,c5::text,c6::text,c7::text,c8::text FROM stream_dup
THEN EXECUTE PROCEDURE filter();
activate;
好了,接下来你可以往流里面并行的写入。
没有唯一标识的重复行如何清除
使用物理行号来删除
create index idx1 on tbl_dup(ctid);
pipeline=# explain delete from tbl_dup where (ctid) in (select ctid from (select ctid,row_number() over(partition by sid,crt_time order by ctid desc) as rn from tbl_dup) t where t.rn<>1);
QUERY PLAN
-----------------------------------------------------------------------------------------------------------------------
Delete on tbl_dup (cost=673139.27..683574.38 rows=1000000 width=36)
-> Nested Loop (cost=673139.27..683574.38 rows=1000000 width=36)
-> Unique (cost=673138.84..683088.84 rows=199 width=36)
-> Sort (cost=673138.84..678113.84 rows=1990000 width=36)
Sort Key: t.ctid
-> Subquery Scan on t (cost=332753.69..402753.69 rows=1990000 width=36)
Filter: (t.rn <> 1)
-> WindowAgg (cost=332753.69..377753.69 rows=2000000 width=18)
-> Sort (cost=332753.69..337753.69 rows=2000000 width=18)
Sort Key: tbl_dup_1.sid, tbl_dup_1.crt_time, tbl_dup_1.ctid DESC
-> Seq Scan on tbl_dup tbl_dup_1 (cost=0.00..100000.00 rows=2000000 width=18)
-> Index Only Scan using idx1 on tbl_dup (cost=0.43..2.43 rows=1 width=6)
Index Cond: (ctid = t.ctid)
(13 rows)
Time: 1.402 ms
pipeline=# delete from tbl_dup where (ctid) in (select ctid from (select ctid,row_number() over(partition by sid,crt_time order by ctid desc) as rn from tbl_dup) t where t.rn<>1);
DELETE 181726
Time: 3316.990 ms
重复数据清洗优化手段 - 技术点分享
前面用到了很多种方法来进行优化,下面总结一下
1. 窗口查询
主要用于筛选出重复值,并加上标记。
需要去重的字段作为窗口,规则字段作为排序字段,建立好复合索引,即可开始了。
2. 外部表
如果你的数据来自文本,那么可以采用一气呵成的方法来完成去重,即把数据库当成文本处理平台,通过PostgreSQL的file_fdw外部表直接访问文件,在SQL中进行去重。
3. 并行计算
如果你的数据来自文本,可以将文本切割成多个小文件,使用外部表,并行的去重,但是注意,去完重后,需要用merge sort再次去重。
另一方面,PostgreSQL 9.6已经支持单个QUERY使用多个CPU核来处理,可以线性的提升性能。(去重需要考虑合并的问题)。
4. 递归查询、递归收敛
使用递归查询,可以对重复度很高的场景进行优化,曾经在几个CASE中使用,优化效果非常明显,从几十倍到几百倍不等。
《时序数据合并场景加速分析和实现 - 复合索引,窗口分组查询加速,变态递归加速》
《distinct xx和count(distinct xx)的变态递归优化方法 - 索引收敛(skip scan)扫描》
《用PostgreSQL找回618秒逝去的青春 - 递归收敛优化》
5. insert on conflict
PostgreSQL 9.5新增的特性,可以在数据导入时完成去重的操作。 直接导出结果。
CREATE unlogged TABLE tmp_uniq (
id serial8,
sid int,
crt_time timestamp,
mdf_time timestamp,
c1 text default md5(random()::text),
c2 text default md5(random()::text),
c3 text default md5(random()::text),
c4 text default md5(random()::text),
c5 text default md5(random()::text),
c6 text default md5(random()::text),
c7 text default md5(random()::text),
c8 text default md5(random()::text),
unique (sid,crt_time)
) with (autovacuum_enabled=off, toast.autovacuum_enabled=off);
并行装载(目前不能在同一条QUERY中多次UPDATE一条记录)
ERROR: 21000: ON CONFLICT DO UPDATE command cannot affect row a second time
HINT: Ensure that no rows proposed for insertion within the same command have duplicate constrained values.
LOCATION: ExecOnConflictUpdate, nodeModifyTable.c:1133
split -l 20000 tbl_dup.csv load_test_
for i in `ls load_test_??`
do
psql <<EOF &
drop foreign table "ft_$i";
CREATE FOREIGN TABLE "ft_$i" (
id serial8,
sid int,
crt_time timestamp,
mdf_time timestamp,
c1 text default md5(random()::text),
c2 text default md5(random()::text),
c3 text default md5(random()::text),
c4 text default md5(random()::text),
c5 text default md5(random()::text),
c6 text default md5(random()::text),
c7 text default md5(random()::text),
c8 text default md5(random()::text)
) server file options (filename '/home/digoal/$i' );
\timing
insert into tmp_uniq select * from "ft_$i" on conflict do update set
id=excluded.id, sid=excluded.sid, crt_time=excluded.crt_time, mdf_time=excluded.mdf_time,
c1=excluded.c1,c2=excluded.c2,c3=excluded.c3,c4=excluded.c4,c5=excluded.c5,c6=excluded.c6,c7=excluded.c7,c8=excluded.c8
where mdf_time<excluded.mdf_time
;
EOF
done
6. LLVM
处理多行时,减少上下文切换。
性能可以提升一倍左右。
《分析加速引擎黑科技 - LLVM、列存、多核并行、算子复用 大联姻 - 一起来开启PostgreSQL的百宝箱》
7. 流式计算
在数据导入过程中,流式去重,是不是很炫酷呢。
create stream ss_uniq (
id int8,
sid int,
crt_time timestamp,
mdf_time timestamp,
c1 text default md5(random()::text),
c2 text default md5(random()::text),
c3 text default md5(random()::text),
c4 text default md5(random()::text),
c5 text default md5(random()::text),
c6 text default md5(random()::text),
c7 text default md5(random()::text),
c8 text default md5(random()::text)
);
CREATE CONTINUOUS VIEW cv_uniq as
select row_number() over(partition by sid,crt_time order by mdf_time desc) as rn, id,sid,crt_time,mdf_time,c1,c2,c3,c4,c5,c6,c7,c8 from ss_uniq;
《流计算风云再起 - PostgreSQL携PipelineDB力挺IoT》
8. 并行创建索引
在创建索引时,为了防止堵塞DML操作,可以使用concurrently的方式创建,不会影响DML操作。
建立索引时,加大maintenance_work_mem可以提高创建索引的速度。
9. 并行读取文件片段导入
为了加快导入速度,可以切片,并行导入。
将来可以在file_fdw这种外部访问接口中做到分片并行导入。
10. bulk load, nologgin
如果数据库只做计算,也就是说在数据库中处理的中间结果无需保留时,可以适应bulk的方式导入,或者使用unlogged table。
可以提高导入的速度,同时导入时也可以关闭autovacuum.
小结
1. 如果数据已经在数据库中,在原表基础上,删除重复数据,耗时约2秒。
2. 如果数据要从文本导入,并将去重后的数据导出,整个流程约耗时5.28秒。
参考
《分析加速引擎黑科技 - LLVM、列存、多核并行、算子复用 大联姻 - 一起来开启PostgreSQL的百宝箱》
《流计算风云再起 - PostgreSQL携PipelineDB力挺IoT》
《时序数据合并场景加速分析和实现 - 复合索引,窗口分组查询加速,变态递归加速》
《distinct xx和count(distinct xx)的变态递归优化方法 - 索引收敛(skip scan)扫描》
《用PostgreSQL找回618秒逝去的青春 - 递归收敛优化》