PostgreSQL 重复 数据清洗 优化教程

10 minute read

背景

重复数据清洗是一个比较常见的业务需求,比如有些数据库不支持唯一约束,或者程序设计之初可能没有考虑到需要在某些列上面加唯一约束,导致应用在上线一段时间后,产生了一些重复的数据。

那么重复数据的清洗需求就来了。

有哪些清洗手段,如何做到高效的清洗呢?

一个小小的应用场景,带出了10项数据库技术点,听我道来。

重复数据清洗手段

比如一个表,有几个字段本来应该是唯一的,产生了重复值,现在给你一个规则,保留重复值中的一条,其他删掉。

例子

postgres=# create table tbl_dup(   
  id serial8,   
  sid int,   
  crt_time timestamp,   
  mdf_time timestamp,   
  c1 text default md5(random()::text),   
  c2 text default md5(random()::text),   
  c3 text default md5(random()::text),   
  c4 text default md5(random()::text),   
  c5 text default md5(random()::text),   
  c6 text default md5(random()::text),   
  c7 text default md5(random()::text),   
  c8 text default md5(random()::text)   
);   

删除重复的 (sid + crt_time) 组合,并保留重复值中,mdf_time最大的一条。

生成测试数据100万条,1/10 的重复概率,同时为了避免重复数据在一个数据块中,每跳跃500条生成一条重复值。

就生成测试数据 ,是不是觉得已经很炫酷了呢?一条SQL就造了一批这样的数据。

insert into tbl_dup (sid, crt_time, mdf_time)   
select   
  case when mod(id,11)=0 then id+500 else id end,   
  case when mod(id,11)=0 then now()+(''||id+500||' s')::interval else now()+(''||id||' s')::interval end,   
  clock_timestamp()   
from generate_series(1,1000000) t(id);  

验证, 重复记录的ctid不在同一个数据块中。

验证方法是不是很酷呢?用了窗口查询。

postgres=# select * from (select ctid,sid,crt_time,mdf_time, count(*) over(partition by sid,crt_time) as cnt from tbl_dup) t where t.cnt>=2;  
    ctid    |  sid   |          crt_time          |          mdf_time          | cnt   
------------+--------+----------------------------+----------------------------+-----  
 (0,11)     |    511 | 2016-12-29 17:42:13.935348 | 2016-12-29 17:33:43.092625 |   2  
 (20,11)    |    511 | 2016-12-29 17:42:13.935348 | 2016-12-29 17:33:43.102726 |   2  
 (20,22)    |    522 | 2016-12-29 17:42:24.935348 | 2016-12-29 17:33:43.102927 |   2  
 (0,22)     |    522 | 2016-12-29 17:42:24.935348 | 2016-12-29 17:33:43.09283  |   2  
 (21,8)     |    533 | 2016-12-29 17:42:35.935348 | 2016-12-29 17:33:43.103155 |   2  
 (1,8)      |    533 | 2016-12-29 17:42:35.935348 | 2016-12-29 17:33:43.093191 |   2  
 (21,19)    |    544 | 2016-12-29 17:42:46.935348 | 2016-12-29 17:33:43.103375 |   2  
 (1,19)     |    544 | 2016-12-29 17:42:46.935348 | 2016-12-29 17:33:43.093413 |   2  
....  

包含重复的值大概这么多

postgres=# select count(*) from (select * from (select ctid,sid,crt_time,mdf_time, count(*) over(partition by sid,crt_time) as cnt from tbl_dup) t where t.cnt=2) t;  
 count    
--------  
 181726  
(1 row)  
Time: 1690.709 ms  

你如果觉得这个还挺快的,偷偷告诉你测试环境CPU型号。

Intel(R) Xeon(R) CPU E5-2630 0 @ 2.30GHz

接下来开始去重了

方法1, 插入法

将去重后的结果插入一张新的表中,耗时5.8秒

create table tbl_uniq(like tbl_dup including all);  
  
insert into tbl_uniq (id,sid,crt_time,mdf_time,c1,c2,c3,c4,c5,c6,c7,c8)  
select id,sid,crt_time,mdf_time,c1,c2,c3,c4,c5,c6,c7,c8 from   
(select row_number() over(partition by sid,crt_time order by mdf_time desc) as rn, * from tbl_dup) t  
where t.rn=1;  
  
INSERT 0 909137  
Time: 5854.349 ms  

分析优化空间,显示排序可以优化

postgres=# explain (analyze,verbose,timing,costs,buffers)  insert into tbl_uniq (id,sid,crt_time,mdf_time,c1,c2,c3,c4,c5,c6,c7,c8)  
select id,sid,crt_time,mdf_time,c1,c2,c3,c4,c5,c6,c7,c8 from   
(select row_number() over(partition by sid,crt_time order by mdf_time desc) as rn, * from tbl_dup) t  
where t.rn=1;  
                                                                                                QUERY PLAN                                                                                                  
----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------  
 Insert on public.tbl_uniq  (cost=423098.84..458098.84 rows=5000 width=292) (actual time=5994.723..5994.723 rows=0 loops=1)  
   Buffers: shared hit=1021856 read=36376 dirtied=36375, temp read=37391 written=37391  
   ->  Subquery Scan on t  (cost=423098.84..458098.84 rows=5000 width=292) (actual time=1715.278..3620.269 rows=909137 loops=1)  
         Output: t.id, t.sid, t.crt_time, t.mdf_time, t.c1, t.c2, t.c3, t.c4, t.c5, t.c6, t.c7, t.c8  
         Filter: (t.rn = 1)  
         Rows Removed by Filter: 90863  
         Buffers: shared hit=40000, temp read=37391 written=37391  
         ->  WindowAgg  (cost=423098.84..445598.84 rows=1000000 width=300) (actual time=1715.276..3345.392 rows=1000000 loops=1)  
               Output: row_number() OVER (?), tbl_dup.id, tbl_dup.sid, tbl_dup.crt_time, tbl_dup.mdf_time, tbl_dup.c1, tbl_dup.c2, tbl_dup.c3, tbl_dup.c4, tbl_dup.c5, tbl_dup.c6, tbl_dup.c7, tbl_dup.c8  
               Buffers: shared hit=40000, temp read=37391 written=37391  
               ->  Sort  (cost=423098.84..425598.84 rows=1000000 width=292) (actual time=1715.263..2174.426 rows=1000000 loops=1)  
                     Output: tbl_dup.sid, tbl_dup.crt_time, tbl_dup.mdf_time, tbl_dup.id, tbl_dup.c1, tbl_dup.c2, tbl_dup.c3, tbl_dup.c4, tbl_dup.c5, tbl_dup.c6, tbl_dup.c7, tbl_dup.c8  
                     Sort Key: tbl_dup.sid, tbl_dup.crt_time, tbl_dup.mdf_time DESC  
                     Sort Method: external sort  Disk: 299128kB  
                     Buffers: shared hit=40000, temp read=37391 written=37391  
                     ->  Seq Scan on public.tbl_dup  (cost=0.00..50000.00 rows=1000000 width=292) (actual time=0.012..398.007 rows=1000000 loops=1)  
                           Output: tbl_dup.sid, tbl_dup.crt_time, tbl_dup.mdf_time, tbl_dup.id, tbl_dup.c1, tbl_dup.c2, tbl_dup.c3, tbl_dup.c4, tbl_dup.c5, tbl_dup.c6, tbl_dup.c7, tbl_dup.c8  
                           Buffers: shared hit=40000  
 Planning time: 0.174 ms  
 Execution time: 6120.921 ms  
(20 rows)  

优化1

索引,消除排序,优化后只需要3.9秒

对于在线业务,PostgreSQL可以使用并行CONCURRENTLY创建索引,不会堵塞DML。

postgres=# create index CONCURRENTLY idx_tbl_dup on tbl_dup(sid,crt_time,mdf_time desc);  
CREATE INDEX  
Time: 765.426 ms  
  
postgres=# truncate tbl_uniq;  
TRUNCATE TABLE  
Time: 208.808 ms  
postgres=# insert into tbl_uniq (id,sid,crt_time,mdf_time,c1,c2,c3,c4,c5,c6,c7,c8)                                                  
select id,sid,crt_time,mdf_time,c1,c2,c3,c4,c5,c6,c7,c8 from   
(select row_number() over(partition by sid,crt_time order by mdf_time desc) as rn, * from tbl_dup) t  
where t.rn=1;  
INSERT 0 909137  
Time: 3978.425 ms  
  
postgres=# explain (analyze,verbose,timing,costs,buffers)  insert into tbl_uniq (id,sid,crt_time,mdf_time,c1,c2,c3,c4,c5,c6,c7,c8)  
select id,sid,crt_time,mdf_time,c1,c2,c3,c4,c5,c6,c7,c8 from   
(select row_number() over(partition by sid,crt_time order by mdf_time desc) as rn, * from tbl_dup) t  
where t.rn=1;  
                                                                                                QUERY PLAN                                                                                                  
----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------  
 Insert on public.tbl_uniq  (cost=0.42..159846.13 rows=5000 width=292) (actual time=4791.360..4791.360 rows=0 loops=1)  
   Buffers: shared hit=1199971 read=41303 dirtied=36374  
   ->  Subquery Scan on t  (cost=0.42..159846.13 rows=5000 width=292) (actual time=0.061..2177.768 rows=909137 loops=1)  
         Output: t.id, t.sid, t.crt_time, t.mdf_time, t.c1, t.c2, t.c3, t.c4, t.c5, t.c6, t.c7, t.c8  
         Filter: (t.rn = 1)  
         Rows Removed by Filter: 90863  
         Buffers: shared hit=218112 read=4929  
         ->  WindowAgg  (cost=0.42..147346.13 rows=1000000 width=300) (actual time=0.060..1901.174 rows=1000000 loops=1)  
               Output: row_number() OVER (?), tbl_dup.id, tbl_dup.sid, tbl_dup.crt_time, tbl_dup.mdf_time, tbl_dup.c1, tbl_dup.c2, tbl_dup.c3, tbl_dup.c4, tbl_dup.c5, tbl_dup.c6, tbl_dup.c7, tbl_dup.c8  
               Buffers: shared hit=218112 read=4929  
               ->  Index Scan using idx_tbl_dup on public.tbl_dup  (cost=0.42..127346.13 rows=1000000 width=292) (actual time=0.051..601.249 rows=1000000 loops=1)  
                     Output: tbl_dup.id, tbl_dup.sid, tbl_dup.crt_time, tbl_dup.mdf_time, tbl_dup.c1, tbl_dup.c2, tbl_dup.c3, tbl_dup.c4, tbl_dup.c5, tbl_dup.c6, tbl_dup.c7, tbl_dup.c8  
                     Buffers: shared hit=218112 read=4929  
 Planning time: 0.304 ms  
 Execution time: 4834.392 ms  
(15 rows)  
Time: 4835.484 ms  

优化2

递归查询、递归收敛

有几个CASE用这种方法提升了几百倍性能

《时序数据合并场景加速分析和实现 - 复合索引,窗口分组查询加速,变态递归加速》

《distinct xx和count(distinct xx)的变态递归优化方法 - 索引收敛(skip scan)扫描》

《用PostgreSQL找回618秒逝去的青春 - 递归收敛优化》

当重复值很多时,可以使用此法,效果非常好

with recursive skip as (    
  (    
    select tbl_dup as tbl_dup from tbl_dup where (sid,crt_time,mdf_time) in (select sid,crt_time,mdf_time from tbl_dup order by sid,crt_time,mdf_time desc limit 1)   
  )    
  union all    
  (    
    select (   
      select tbl_dup from tbl_dup where (sid,crt_time,mdf_time) in (select sid,crt_time,mdf_time from tbl_dup t where t.sid>(s.tbl_dup).sid or (t.sid=(s.tbl_dup).sid and t.crt_time>(s.tbl_dup).crt_time) and t.sid is not null order by t.sid,t.crt_time,t.mdf_time desc limit 1)   
    ) from skip s where (s.tbl_dup).sid is not null   
  )    -- 这里的where (s.tbl_dup).sid is not null 一定要加, 否则就死循环了.   
)     
select (t.tbl_dup).sid, (t.tbl_dup).crt_time from skip t where t.* is not null;   

有UK时这样用

with recursive skip as (    
  (    
    select tbl_dup as tbl_dup from tbl_dup where (id) in (select id from tbl_dup order by sid,crt_time,mdf_time desc limit 1)   
  )    
  union all    
  (    
    select (   
      select tbl_dup from tbl_dup where id in (select id from tbl_dup t where t.sid>(s.tbl_dup).sid or (t.sid=(s.tbl_dup).sid and t.crt_time>(s.tbl_dup).crt_time) and t.id is not null order by t.sid,t.crt_time,t.mdf_time desc limit 1)   
    ) from skip s where (s.tbl_dup).id is not null   
  )    -- 这里的where (s.tbl_dup).id is not null 一定要加, 否则就死循环了.   
)     
select (t.tbl_dup).sid, (t.tbl_dup).crt_time from skip t where t.* is not null;   

方法3, 删除法

导入需要处理的时,新增一个row_number字段,并建立where row_number<>1的partial index.

删除时删除此部分记录即可,2秒搞定需求。

postgres=# delete from tbl_dup where (sid,crt_time,mdf_time) in (select sid,crt_time,mdf_time from (select sid,crt_time,mdf_time,row_number() over(partition by sid,crt_time order by mdf_time desc) as rn from tbl_dup) t where t.rn<>1);  
  
DELETE 90863  
Time: 2079.588 ms  
  
  
postgres=# explain delete from tbl_dup where (sid,crt_time,mdf_time) in (select sid,crt_time,mdf_time from (select sid,crt_time,mdf_time,row_number() over(partition by sid,crt_time order by mdf_time desc) as rn from tbl_dup) t where t.rn<>1);  
                                                             QUERY PLAN                                                               
------------------------------------------------------------------------------------------------------------------------------------  
 Delete on tbl_dup  (cost=187947.63..283491.75 rows=995000 width=50)  
   ->  Hash Semi Join  (cost=187947.63..283491.75 rows=995000 width=50)  
         Hash Cond: ((tbl_dup.sid = t.sid) AND (tbl_dup.crt_time = t.crt_time) AND (tbl_dup.mdf_time = t.mdf_time))  
         ->  Seq Scan on tbl_dup  (cost=0.00..50000.00 rows=1000000 width=26)  
         ->  Hash  (cost=159846.13..159846.13 rows=995000 width=64)  
               ->  Subquery Scan on t  (cost=0.42..159846.13 rows=995000 width=64)  
                     Filter: (t.rn <> 1)  
                     ->  WindowAgg  (cost=0.42..147346.13 rows=1000000 width=28)  
                           ->  Index Only Scan using idx_tbl_dup on tbl_dup tbl_dup_1  (cost=0.42..127346.13 rows=1000000 width=20)  
(9 rows)  

验证

postgres=# select count(*) , count(distinct (sid,crt_time)) from tbl_dup;  
 count  | count    
--------+--------  
 909137 | 909137  
(1 row)  

一气呵成的方法

假如重复数据来自文本,从文本去重后,导入数据库,再导出文本。

怎么听起来像把数据库当成了文本处理工具在用呢?

没关系,反正目的就是要快速。

怎么一气呵成呢?

首先是文件外部表,其次是COPY管道,一气呵成。

https://www.postgresql.org/docs/9.6/static/file-fdw.html

postgres=# create extension file_fdw;  
CREATE EXTENSION  
  
  
postgres=# copy tbl_dup to '/home/digoal/tbl_dup.csv' ;  
COPY 1000000  
  
postgres=# create server file foreign data wrapper file_fdw;  
CREATE SERVER  
  
CREATE FOREIGN TABLE ft_tbl_dup (   
  id serial8,   
  sid int,   
  crt_time timestamp,   
  mdf_time timestamp,   
  c1 text default md5(random()::text),   
  c2 text default md5(random()::text),   
  c3 text default md5(random()::text),   
  c4 text default md5(random()::text),   
  c5 text default md5(random()::text),   
  c6 text default md5(random()::text),   
  c7 text default md5(random()::text),   
  c8 text default md5(random()::text)   
) server file options (filename '/home/digoal/tbl_dup.csv' );  
  
postgres=# copy (select id,sid,crt_time,mdf_time,c1,c2,c3,c4,c5,c6,c7,c8 from   
(select row_number() over(partition by sid,crt_time order by mdf_time desc) as rn, * from ft_tbl_dup) t  
where t.rn=1) to '/home/digoal/tbl_uniq.csv';  
  
COPY 909137  
Time: 10973.289 ms  

很显然速度还不够惊人,所以接下来看优化手段。

并行处理优化手段

拆分成多个文件,并行处理,耗时降低到800毫秒左右。注意这没有结束,最后还需要merge sort对全局去重。

split -l 50000 tbl_dup.csv load_test_  
  
for i in `ls load_test_??`   
do  
psql <<EOF &  
drop foreign table "ft_$i";  
CREATE FOREIGN TABLE "ft_$i" (   
  id serial8,   
  sid int,   
  crt_time timestamp,   
  mdf_time timestamp,   
  c1 text default md5(random()::text),   
  c2 text default md5(random()::text),   
  c3 text default md5(random()::text),   
  c4 text default md5(random()::text),   
  c5 text default md5(random()::text),   
  c6 text default md5(random()::text),   
  c7 text default md5(random()::text),   
  c8 text default md5(random()::text)   
) server file options (filename '/home/digoal/$i' );  
  
\timing  
  
copy (select id,sid,crt_time,mdf_time,c1,c2,c3,c4,c5,c6,c7,c8 from   
(select row_number() over(partition by sid,crt_time order by mdf_time desc) as rn, * from "ft_$i") t  
where t.rn=1) to '/home/digoal/uniq_csv.$i';  
  
EOF  
done  

速度提升到了1秒以内完成,还可以继续提高并行度,总耗时降低到200毫秒左右。

COPY 45500  
Time: 764.978 ms  
COPY 45500  
Time: 683.255 ms  
COPY 45500  
Time: 775.625 ms  
COPY 45500  
Time: 733.227 ms  
COPY 45500  
Time: 750.978 ms  
COPY 45500  
Time: 766.984 ms  
COPY 45500  
Time: 796.796 ms  
COPY 45500  
Time: 797.016 ms  
COPY 45500  
Time: 881.682 ms  
COPY 45500  
Time: 794.691 ms  
COPY 45500  
Time: 812.932 ms  
COPY 45500  
Time: 921.792 ms  
COPY 45500  
Time: 890.095 ms  
COPY 45500  
Time: 845.815 ms  
COPY 45500  
Time: 867.456 ms  
COPY 45500  
Time: 874.979 ms  
COPY 45500  
Time: 882.578 ms  
COPY 45500  
Time: 880.131 ms  
COPY 45500  
Time: 901.515 ms  
COPY 45500  
Time: 904.857 ms  

注意这没有结束,最后还需要merge sort对全局去重,所以单纯的并行是不够的。

接下来看下面的方法。

一气呵成方法2

并行导入单表处理后倒出,中间结果不需要保存,所以使用UNLOGGED TABLE

CREATE unlogged TABLE tmp (   
  id serial8,   
  sid int,   
  crt_time timestamp,   
  mdf_time timestamp,   
  c1 text default md5(random()::text),   
  c2 text default md5(random()::text),   
  c3 text default md5(random()::text),   
  c4 text default md5(random()::text),   
  c5 text default md5(random()::text),   
  c6 text default md5(random()::text),   
  c7 text default md5(random()::text),   
  c8 text default md5(random()::text)   
) with (autovacuum_enabled=off, toast.autovacuum_enabled=off);  
  
create index idx_tmp_1 on tmp (sid,crt_time,mdf_time desc);  
split -l 20000 tbl_dup.csv load_test_  
date +%F%T.%N  
  
for i in `ls load_test_??`   
do  
psql <<EOF &  
truncate tmp;  
copy tmp from '/home/digoal/$i';  
  
EOF  
done  
  
for ((i=1;i>0;i=1))  
do  
sleep 0.0001  
cnt=`ps -ewf|grep -v grep|grep -c psql`  
if [ $cnt -eq 0 ]; then  
break  
fi  
done  
  
psql <<EOF  
copy (select id,sid,crt_time,mdf_time,c1,c2,c3,c4,c5,c6,c7,c8 from   
(select row_number() over(partition by sid,crt_time order by mdf_time desc) as rn, * from tmp) t  
where t.rn=1) to '/dev/shm/tbl_uniq.csv';  
EOF  
  
date +%F%T.%N  
2016-12-3000:59:42.309126109  
2016-12-3000:59:47.589134168  

5.28秒。

并行的方法, 流处理 之 事件处理

CREATE stream stream_dup (   
  id int8,   
  sid int,   
  crt_time timestamp,   
  mdf_time timestamp,   
  c1 text default md5(random()::text),   
  c2 text default md5(random()::text),   
  c3 text default md5(random()::text),   
  c4 text default md5(random()::text),   
  c5 text default md5(random()::text),   
  c6 text default md5(random()::text),   
  c7 text default md5(random()::text),   
  c8 text default md5(random()::text)   
) ;  
  
CREATE unlogged table tbl_uniq (   
  id serial8,   
  sid int,   
  crt_time timestamp,   
  mdf_time timestamp,   
  c1 text default md5(random()::text),   
  c2 text default md5(random()::text),   
  c3 text default md5(random()::text),   
  c4 text default md5(random()::text),   
  c5 text default md5(random()::text),   
  c6 text default md5(random()::text),   
  c7 text default md5(random()::text),   
  c8 text default md5(random()::text) ,
  unique (sid,crt_time)
) with (autovacuum_enabled=off, toast.autovacuum_enabled=off);  

create or replace function filter() returns trigger as $$
declare
begin
  insert into tbl_uniq values (NEW.id,NEW.sid, NEW.crt_time,NEW.mdf_time,NEW.c1,NEW.c2,NEW.c3,NEW.c4,NEW.c5,NEW.c6,NEW.c7,NEW.c8) on conflict (sid,crt_time) do update set 
   id=excluded.id, mdf_time=excluded.mdf_time, c1=excluded.c1,c2=excluded.c2,c3=excluded.c3,c4=excluded.c4,c5=excluded.c5,c6=excluded.c6,c7=excluded.c7,c8=excluded.c8 
   where tbl_uniq.mdf_time<excluded.mdf_time;
  return new;
end;
$$ language plpgsql strict;

CREATE CONTINUOUS TRANSFORM ct AS 
  SELECT id::int8,sid::int,crt_time::timestamp,mdf_time::timestamp,c1::text,c2::text,c3::text,c4::text,c5::text,c6::text,c7::text,c8::text FROM stream_dup 
THEN EXECUTE PROCEDURE filter(); 
 
activate; 

好了,接下来你可以往流里面并行的写入。

没有唯一标识的重复行如何清除

使用物理行号来删除

create index idx1 on tbl_dup(ctid);

pipeline=# explain delete from tbl_dup where (ctid) in (select ctid from (select ctid,row_number() over(partition by sid,crt_time order by ctid desc) as rn from tbl_dup) t where t.rn<>1); 
                                                      QUERY PLAN                                                       
-----------------------------------------------------------------------------------------------------------------------
 Delete on tbl_dup  (cost=673139.27..683574.38 rows=1000000 width=36)
   ->  Nested Loop  (cost=673139.27..683574.38 rows=1000000 width=36)
         ->  Unique  (cost=673138.84..683088.84 rows=199 width=36)
               ->  Sort  (cost=673138.84..678113.84 rows=1990000 width=36)
                     Sort Key: t.ctid
                     ->  Subquery Scan on t  (cost=332753.69..402753.69 rows=1990000 width=36)
                           Filter: (t.rn <> 1)
                           ->  WindowAgg  (cost=332753.69..377753.69 rows=2000000 width=18)
                                 ->  Sort  (cost=332753.69..337753.69 rows=2000000 width=18)
                                       Sort Key: tbl_dup_1.sid, tbl_dup_1.crt_time, tbl_dup_1.ctid DESC
                                       ->  Seq Scan on tbl_dup tbl_dup_1  (cost=0.00..100000.00 rows=2000000 width=18)
         ->  Index Only Scan using idx1 on tbl_dup  (cost=0.43..2.43 rows=1 width=6)
               Index Cond: (ctid = t.ctid)
(13 rows)
Time: 1.402 ms

pipeline=# delete from tbl_dup where (ctid) in (select ctid from (select ctid,row_number() over(partition by sid,crt_time order by ctid desc) as rn from tbl_dup) t where t.rn<>1); 
DELETE 181726
Time: 3316.990 ms

重复数据清洗优化手段 - 技术点分享

前面用到了很多种方法来进行优化,下面总结一下

1. 窗口查询

主要用于筛选出重复值,并加上标记。

需要去重的字段作为窗口,规则字段作为排序字段,建立好复合索引,即可开始了。

2. 外部表

如果你的数据来自文本,那么可以采用一气呵成的方法来完成去重,即把数据库当成文本处理平台,通过PostgreSQL的file_fdw外部表直接访问文件,在SQL中进行去重。

3. 并行计算

如果你的数据来自文本,可以将文本切割成多个小文件,使用外部表,并行的去重,但是注意,去完重后,需要用merge sort再次去重。

另一方面,PostgreSQL 9.6已经支持单个QUERY使用多个CPU核来处理,可以线性的提升性能。(去重需要考虑合并的问题)。

4. 递归查询、递归收敛

使用递归查询,可以对重复度很高的场景进行优化,曾经在几个CASE中使用,优化效果非常明显,从几十倍到几百倍不等。

《时序数据合并场景加速分析和实现 - 复合索引,窗口分组查询加速,变态递归加速》

《distinct xx和count(distinct xx)的变态递归优化方法 - 索引收敛(skip scan)扫描》

《用PostgreSQL找回618秒逝去的青春 - 递归收敛优化》

5. insert on conflict

PostgreSQL 9.5新增的特性,可以在数据导入时完成去重的操作。 直接导出结果。

CREATE unlogged TABLE tmp_uniq (   
  id serial8,   
  sid int,   
  crt_time timestamp,   
  mdf_time timestamp,   
  c1 text default md5(random()::text),   
  c2 text default md5(random()::text),   
  c3 text default md5(random()::text),   
  c4 text default md5(random()::text),   
  c5 text default md5(random()::text),   
  c6 text default md5(random()::text),   
  c7 text default md5(random()::text),   
  c8 text default md5(random()::text),  
  unique (sid,crt_time)  
) with (autovacuum_enabled=off, toast.autovacuum_enabled=off);  

并行装载(目前不能在同一条QUERY中多次UPDATE一条记录)

ERROR:  21000: ON CONFLICT DO UPDATE command cannot affect row a second time  
HINT:  Ensure that no rows proposed for insertion within the same command have duplicate constrained values.  
LOCATION:  ExecOnConflictUpdate, nodeModifyTable.c:1133  
split -l 20000 tbl_dup.csv load_test_  
  
for i in `ls load_test_??`   
do  
psql <<EOF &  
drop foreign table "ft_$i";  
  
CREATE FOREIGN TABLE "ft_$i" (   
  id serial8,   
  sid int,   
  crt_time timestamp,   
  mdf_time timestamp,   
  c1 text default md5(random()::text),   
  c2 text default md5(random()::text),   
  c3 text default md5(random()::text),   
  c4 text default md5(random()::text),   
  c5 text default md5(random()::text),   
  c6 text default md5(random()::text),   
  c7 text default md5(random()::text),   
  c8 text default md5(random()::text)   
) server file options (filename '/home/digoal/$i' );  
  
\timing  
  
insert into tmp_uniq select * from "ft_$i" on conflict do update set   
id=excluded.id, sid=excluded.sid, crt_time=excluded.crt_time, mdf_time=excluded.mdf_time,  
c1=excluded.c1,c2=excluded.c2,c3=excluded.c3,c4=excluded.c4,c5=excluded.c5,c6=excluded.c6,c7=excluded.c7,c8=excluded.c8  
where mdf_time<excluded.mdf_time  
;  
  
EOF  
done  

6. LLVM

处理多行时,减少上下文切换。

性能可以提升一倍左右。

《分析加速引擎黑科技 - LLVM、列存、多核并行、算子复用 大联姻 - 一起来开启PostgreSQL的百宝箱》

7. 流式计算

在数据导入过程中,流式去重,是不是很炫酷呢。

create stream ss_uniq (  
  id int8,   
  sid int,   
  crt_time timestamp,   
  mdf_time timestamp,   
  c1 text default md5(random()::text),   
  c2 text default md5(random()::text),   
  c3 text default md5(random()::text),   
  c4 text default md5(random()::text),   
  c5 text default md5(random()::text),   
  c6 text default md5(random()::text),   
  c7 text default md5(random()::text),   
  c8 text default md5(random()::text)  
);  
CREATE CONTINUOUS VIEW cv_uniq as  
select row_number() over(partition by sid,crt_time order by mdf_time desc) as rn, id,sid,crt_time,mdf_time,c1,c2,c3,c4,c5,c6,c7,c8 from ss_uniq;  

《流计算风云再起 - PostgreSQL携PipelineDB力挺IoT》

8. 并行创建索引

在创建索引时,为了防止堵塞DML操作,可以使用concurrently的方式创建,不会影响DML操作。

建立索引时,加大maintenance_work_mem可以提高创建索引的速度。

9. 并行读取文件片段导入

为了加快导入速度,可以切片,并行导入。

将来可以在file_fdw这种外部访问接口中做到分片并行导入。

10. bulk load, nologgin

如果数据库只做计算,也就是说在数据库中处理的中间结果无需保留时,可以适应bulk的方式导入,或者使用unlogged table。

可以提高导入的速度,同时导入时也可以关闭autovacuum.

小结

1. 如果数据已经在数据库中,在原表基础上,删除重复数据,耗时约2秒。

2. 如果数据要从文本导入,并将去重后的数据导出,整个流程约耗时5.28秒。

参考

《分析加速引擎黑科技 - LLVM、列存、多核并行、算子复用 大联姻 - 一起来开启PostgreSQL的百宝箱》

《流计算风云再起 - PostgreSQL携PipelineDB力挺IoT》

《时序数据合并场景加速分析和实现 - 复合索引,窗口分组查询加速,变态递归加速》

《distinct xx和count(distinct xx)的变态递归优化方法 - 索引收敛(skip scan)扫描》

《用PostgreSQL找回618秒逝去的青春 - 递归收敛优化》

Flag Counter

digoal’s 大量PostgreSQL文章入口