Greenplum 资源隔离的原理与源码分析

6 minute read

背景

Greenplum是一个MPP的数据仓库系统,最大的优点是水平扩展,并且一个QUERY就能将硬件资源的能力发挥到极致。

但这也是被一些用户诟病的一点,因为一个的QUERY就可能占光所有的硬件资源,所以并发一多的话,query相互之间的资源争抢就比较严重。

Greenplum资源隔离的手段

Greenplum为了降低并发query之间的资源争抢,设计了一套基于resource queue的资源管理方法。

每个resource queue定义了资源的使用或限制模式,根据用户的用途将用户指派给resource queue,这样就起到了资源管理的目的。

例如将分析师、跑报表的、ETL分为三用户。根据这三类用户的预期资源使用情况,以及任务的优先级,规划三类资源管理的队列。分别将三类用户和三类resource queue绑定,起到资源控制的作用。

screenshot

resource queue的创建语法

screenshot

支持的资源隔离类别

  • active_statements, 该queue同时可以运行的query数量。

  • max_cost,指资源组内所有正在运行的query的评估成本的最大值。

  • cost_overcommit,当系统空闲时,是否允许该queue的query总cost超出设定的max_cost。

  • min_cost 指低于该值的QUERY不计入该queue 的cost成本,也不排队,而是直接执行。

  • priority , 用于平衡各个QUEUE之间的CPU争抢使用,分为5个等级,每个等级设定了响应的weight,间隔一定的时间判断使用的资源是否达到了weight,然后对该queue 的query使用pg_usleep进行抑制。

  • mem_limit , 为队列中单个segment query(s)允许的最大statement(s)运行内存。

创建resource queue时必须设置active_statements与max_cost之一。

只有超级用户能创建和修改resource queue。

绑定角色与resource queue

screenshot

resource queue用法举例

创建两个资源队列,指派给两个用户(一个资源队列可以指派给多个用户)。

postgres=# create resource queue min with (active_statements=3, priority=min);  
CREATE QUEUE  
postgres=# create resource queue max with (active_statements=1, priority=max);  
CREATE QUEUE  
postgres=# create role max login encrypted password '123' resource queue max;  
CREATE ROLE  
postgres=# create role min login encrypted password '123' resource queue min;  
CREATE ROLE  

Greenplum资源隔离的相关代码

src/include/catalog/pg_resqueue.h

#define PG_RESRCTYPE_ACTIVE_STATEMENTS  1       /* rsqcountlimit:                       count  */  
#define PG_RESRCTYPE_MAX_COST                   2       /* rsqcostlimit:                max_cost */  
#define PG_RESRCTYPE_MIN_COST                   3       /* rsqignorecostlimit:          min_cost */  
#define PG_RESRCTYPE_COST_OVERCOMMIT    4       /* rsqovercommit:                       cost_overcommit*/  
						/* start of "pg_resourcetype" entries... */  
#define PG_RESRCTYPE_PRIORITY                   5       /* backoff.c:                   priority queue */  
#define PG_RESRCTYPE_MEMORY_LIMIT               6       /* memquota.c:                  memory quota */  

接下来我挑选了CPU的资源调度进行源码的分析,其他的几个本文就不分析了。

CPU的资源隔离

src/backend/postmaster/backoff.c

五个CPU优先级级别,以及对应的weight(可通过gp_adjust_priority函数调整当前query的weight)。

typedef struct PriorityMapping  
{  
        const char *priorityVal;  
        int weight;  
} PriorityMapping;  
  
const struct PriorityMapping priority_map[] = {  
                {"MAX", 1000000},  
                {"HIGH", 1000},  
                {"MEDIUM", 500},  
                {"LOW", 200},  
                {"MIN", 100},  
                /* End of list marker */  
                {NULL, 0}  
};  

单个进程的资源使用统计信息数据结构

/**  
 * This is information that only the current backend ever needs to see.  
 */  
typedef struct BackoffBackendLocalEntry  
{  
        int                                     processId;              /* Process Id of backend */  
        struct rusage           startUsage;             /* Usage when current statement began. To account for caching of backends. */  
        struct rusage           lastUsage;              /* Usage statistics when backend process performed local backoff action */  
        double                          lastSleepTime;  /* Last sleep time when local backing-off action was performed */  
        int                             counter;                /* Local counter is used as an approx measure of time */  
        bool                            inTick;                 /* Is backend currently performing tick? - to prevent nested calls */  
        bool                            groupingTimeExpired;    /* Should backend try to find better leader? */  
} BackoffBackendLocalEntry;  

单个segment或master内所有进程共享的资源使用统计信息数据结构

/**  
 * There is a backend entry for every backend with a valid backendid on the master and segments.  
 */  
typedef struct BackoffBackendSharedEntry  
{  
        struct  StatementId     statementId;            /* A statement Id. Can be invalid. */  
        int                                     groupLeaderIndex;       /* Who is my leader? */  
        int                                     groupSize;                      /* How many in my group ? */  
        int                                     numFollowers;           /* How many followers do I have? */  
  
        /* These fields are written by backend and read by sweeper process */  
        struct timeval          lastCheckTime;          /* Last time the backend process performed local back-off action.  
                                                                                                Used to determine inactive backends. */  
  
        /* These fields are written to by sweeper and read by backend */  
        bool                            noBackoff;                      /* If set, then no backoff to be performed by this backend */  
        double                          targetUsage;            /* Current target CPU usage as calculated by sweeper */  
        bool                            earlyBackoffExit;       /* Sweeper asking backend to stop backing off */  
  
        /* These fields are written to and read by sweeper */  
        bool                            isActive;                       /* Sweeper marking backend as active based on lastCheckTime */  
        int                                     numFollowersActive;     /* If backend is a leader, this represents number of followers that are active */  
  
        /* These fields are wrtten by backend during init and by manual adjustment */  
        int                                     weight;                         /* Weight of this statement */  
} BackoffBackendSharedEntry;  
  
  
/* In ms */  
#define MIN_SLEEP_THRESHOLD  5000  
  
/* In ms */  
#define DEFAULT_SLEEP_TIME 100.0  

通过getrusage()系统调用获得进程的资源使用情况

        /* Provide tracing information */  
        PG_TRACE1(backoff__localcheck, MyBackendId);  
  
        if (gettimeofday(&currentTime, NULL) < 0)  
        {  
                elog(ERROR, "Unable to execute gettimeofday(). Please disable query prioritization.");  
        }  
  
        if (getrusage(RUSAGE_SELF, &currentUsage) < 0)  
        {  
                elog(ERROR, "Unable to execute getrusage(). Please disable query prioritization.");  
        }  

资源使用换算

        if (!se->noBackoff)  
        {  
  
                /* How much did the cpu work on behalf of this process - incl user and sys time */  
                thisProcessTime = TIMEVAL_DIFF_USEC(currentUsage.ru_utime, le->lastUsage.ru_utime)  
                                                                                + TIMEVAL_DIFF_USEC(currentUsage.ru_stime, le->lastUsage.ru_stime);  
  
                /* Absolute cpu time since the last check. This accounts for multiple procs per segment */  
                totalTime = TIMEVAL_DIFF_USEC(currentTime, se->lastCheckTime);  
  
                cpuRatio = thisProcessTime / totalTime;  
  
                cpuRatio = Min(cpuRatio, 1.0);  
  
                changeFactor = cpuRatio / se->targetUsage;      // 和priority的weight有关,     
		// 和参数gp_resqueue_priority_cpucores_per_segment有关, double CPUAvailable = numProcsPerSegment(); 有关,     
		// se->targetUsage = (CPUAvailable) * (se->weight) / activeWeight / gl->numFollowersActive;  
  
                le->lastSleepTime *= changeFactor;  // 计算是否需要sleep  
  
                if (le->lastSleepTime < DEFAULT_SLEEP_TIME)  
                        le->lastSleepTime = DEFAULT_SLEEP_TIME;  

超出MIN_SLEEP_THRESHOLD则进入休眠

                memcpy( &le->lastUsage, &currentUsage, sizeof(currentUsage));  
                memcpy( &se->lastCheckTime, &currentTime, sizeof(currentTime));  
  
                if (le->lastSleepTime > MIN_SLEEP_THRESHOLD)  // 计算是否需要sleep  
                {  
                        /*  
                         * Sleeping happens in chunks so that the backend may exit early from its sleep if the sweeper requests it to.  
                         */  
                        int j =0;  
                        long sleepInterval = ((long) gp_resqueue_priority_sweeper_interval) * 1000L;  
                        int numIterations = (int) (le->lastSleepTime / sleepInterval);  
                        double leftOver = (double) ((long) le->lastSleepTime % sleepInterval);  
                        for (j=0;j<numIterations;j++)  
                        {  
                                /* Sleep a chunk */  
                                pg_usleep(sleepInterval);   // 休眠  
                                /* Check for early backoff exit */  
                                if (se->earlyBackoffExit)  
                                {  
                                        le->lastSleepTime = DEFAULT_SLEEP_TIME;   /* Minimize sleep time since we may need to recompute from scratch */  
                                        break;  
                                }  
                        }  
                        if (j==numIterations)  
                                pg_usleep(leftOver);  
                }  
        }  

除了前面的休眠调度,还需要考虑当数据库空闲的时候,应该尽量使用数据库的资源,那么什么情况下不进入休眠呢?

        /**  
         * Under certain conditions, we want to avoid backoff. Cases are:  
         * 1. A statement just entered or exited  
         * 2. A statement's weight changed due to user intervention via gp_adjust_priority()  
         * 3. There is no active backend  
         * 4. There is exactly one statement  
         * 5. Total number valid of backends <= number of procs per segment(gp_resqueue_priority_cpucores_per_segment 参数设置)  
         * Case 1 and 2 are approximated by checking if total statement weight changed since last sweeper loop.  
         */  

如何调整正在执行的query的weight

当正在执行一个query时,如果发现它太占资源,我们可以动态的设置它的weight。

当一个query正在执行时,可以调整它的priority

postgres=# set gp_debug_resqueue_priority=on;  
postgres=# set client_min_messages ='debug';  
  
查询当前的resource queue priority    
postgres=# select * from gp_toolkit.gp_resq_priority_statement;  
 rqpdatname | rqpusename | rqpsession | rqpcommand | rqppriority | rqpweight |                        rqpquery                          
------------+------------+------------+------------+-------------+-----------+--------------------------------------------------------  
 postgres   | digoal     |         21 |          1 | MAX         |   1000000 | select pg_sleep(1000000) from gp_dist_random('gp_id');  
 postgres   | digoal     |         22 |          1 | MAX         |   1000000 | select pg_sleep(1000000) from gp_dist_random('gp_id');  
 postgres   | digoal     |         23 |          1 | MAX         |   1000000 | select pg_sleep(1000000) from gp_dist_random('gp_id');  
 postgres   | digoal     |         24 |          1 | MAX         |   1000000 | select pg_sleep(1000000) from gp_dist_random('gp_id');  
 postgres   | digoal     |         25 |          1 | MAX         |   1000000 | select pg_sleep(1000000) from gp_dist_random('gp_id');  
 postgres   | digoal     |         26 |         65 | MAX         |   1000000 | select * from gp_toolkit.gp_resq_priority_statement;  
(6 rows)  
  
设置,可以直接设置priority的别名(MIN, MAX, LOW, HIGH, MEDIAM),或者使用数字设置weight。    
postgres=# select gp_adjust_priority(21,1,'MIN');  
LOG:  changing weight of (21:1) from 1000000 to 100  
 gp_adjust_priority   
--------------------  
                  1  
(1 row)  
postgres=# select * from gp_toolkit.gp_resq_priority_statement;  
 rqpdatname | rqpusename | rqpsession | rqpcommand | rqppriority | rqpweight |                        rqpquery                          
------------+------------+------------+------------+-------------+-----------+--------------------------------------------------------  
 postgres   | digoal     |         21 |          1 | MIN         |       100 | select pg_sleep(1000000) from gp_dist_random('gp_id');  
  
600是一个非标准的priority,所以显示NON-STANDARD    
postgres=# select gp_adjust_priority(21,1,600);  
postgres=# select * from gp_toolkit.gp_resq_priority_statement;  
 rqpdatname | rqpusename | rqpsession | rqpcommand | rqppriority  | rqpweight |                        rqpquery                          
------------+------------+------------+------------+--------------+-----------+--------------------------------------------------------  
 postgres   | digoal     |         21 |          1 | NON-STANDARD |       600 | select pg_sleep(1000000) from gp_dist_random('gp_id');  

代码如下

/**  
 * An interface to re-weigh an existing session on the master and all backends.  
 * Input:  
 *      session id - what session is statement on?  
 *      command count - what is the command count of statement.  
 *      priority value - text, what should be the new priority of this statement.  
 * Output:  
 *      number of backends whose weights were changed by this call.  
 */  
Datum  
gp_adjust_priority_value(PG_FUNCTION_ARGS)  
{  
        int32 session_id = PG_GETARG_INT32(0);  
        int32 command_count = PG_GETARG_INT32(1);  
        Datum           dVal = PG_GETARG_DATUM(2);  
        char *priorityVal = NULL;  
        int wt = 0;  
  
        priorityVal = DatumGetCString(DirectFunctionCall1(textout, dVal));  
  
        if (!priorityVal)  
        {  
                elog(ERROR, "Invalid priority value specified.");  
        }  
  
        wt = BackoffPriorityValueToInt(priorityVal);  
  
        Assert(wt > 0);  
  
        pfree(priorityVal);  
  
        return DirectFunctionCall3(gp_adjust_priority_int, Int32GetDatum(session_id),  
                                                                Int32GetDatum(command_count), Int32GetDatum(wt));  
  
}  

通过cgroup细粒度控制query的资源使用

前面讲的是Greenplum通过自带的resource queue来控制资源使用的情况,但是Greenplum控制的资源种类有限,有没有更细粒度的控制方法呢?

如果要进行更细粒度的控制,可以考虑使用cgroup来隔离各个query的资源使用。

可以做到对cpu, memory, iops, network的细粒度控制。

做法也很简单,

首先要在所有的物理主机创建对应的cgroup,例如为每个资源分配几个等级。

  • cpu: 分若干个等级

  • memory: 分若干个等级

  • iops: 分若干个等级

  • network: 分若干个等级

_

然后获得会话对应的所有节点的backend pid,将backend pid move到对应的cgroup即可。

_1

祝大家玩得开心,欢迎随时来阿里云促膝长谈业务需求 ,恭候光临。

阿里云的小伙伴们加油,努力做 最贴地气的云数据库 。

Flag Counter

digoal’s 大量PostgreSQL文章入口