函数稳定性讲解 - retalk PostgreSQL function’s [ volatile stable immutable ]
背景
PostgreSQL 函数的稳定性, 以前写过几篇BLOG讲述, 见参考部分.
本文再细化并举例说明一下他们的差别.
首先函数稳定性分三种 :
volatile
stable
immutable
首先创建1个测试表 :
digoal=> create table test (id int, info text);
CREATE TABLE
digoal=> insert into test select generate_series(1,100000),random()::text;
INSERT 0 100000
digoal=> create index idx_test_1 on test(id);
CREATE INDEX
1. volatile指函数可以修改数据库, 函数参数值相同的情况下, 可以返回不同的结果, 所以volatile函数在执行过程中优化器对它的处理是每一行都需要执行一次volatile函数.
例如 :
create or replace function f_volatile(i_id int) returns text as $$
declare
result text;
begin
-- update可以用在volatile函数中, 因为UPDATE要修改数据
update test set info='new' where id=i_id returning info into result;
return result;
end;
$$ language plpgsql volatile;
执行这个函数, 正常返回 :
如果是immutable或者stable的话, 将报错.
digoal=> select * from f_volatile(1);
f_volatile
------------
new
(1 row)
下面的函数用来返回一个NUMERIC, 然后进行sum运算.
create or replace function f_test() returns numeric as $$
declare
begin
return 1.5;
end;
$$ language plpgsql volatile;
10W条记录, 执行f_test()耗时335毫秒.
digoal=> explain analyze select f_test() from test;
QUERY PLAN
--------------------------------------------------------------------------------------------------------------
Seq Scan on test (cost=0.00..26638.00 rows=100000 width=0) (actual time=0.035..322.622 rows=100000 loops=1)
Total runtime: 334.539 ms
(2 rows)
Time: 335.035 ms
记住这个执行耗时. 后面要对比f_test()改成stable和immutable后的执行耗时.
单条执行时间 :
digoal=> select f_test();
f_test
--------
1.5
(1 row)
Time: 0.192 ms
2. stable 函数, 不允许修改数据库.
如下 :
digoal=> alter function f_volatile(int) stable;
ALTER FUNCTION
Time: 0.660 ms
再次执行f_volatile将报错, 因为stable的函数不允许执行修改数据库的SQL, 例如UPDATE.
digoal=> select * from f_volatile(1);
ERROR: UPDATE is not allowed in a non-volatile function
CONTEXT: SQL statement "update test set info='new' where id=i_id returning info"
PL/pgSQL function f_volatile(integer) line 5 at SQL statement
Time: 0.869 ms
同样的参数值, stable函数多次执行返回的结果应该一致.
因此优化器可以选择将多次调用stable函数改为一次调用. stable函数作为where条件中的比较值是, 可以使用索引. 因为走索引需要一个常量.
digoal=> alter function f_test() stable;
ALTER FUNCTION
digoal=> explain analyze select * from test where id<=f_test()::int;
QUERY PLAN
------------------------------------------------------------------------------------------------------------------
Index Scan using idx_test_1 on test (cost=0.25..2.55 rows=1 width=21) (actual time=0.019..0.024 rows=2 loops=1)
Index Cond: (id <= (f_test())::integer)
Total runtime: 0.054 ms
(3 rows)
Time: 0.926 ms
改回volatile, 则不允许走索引. 如下 :
digoal=> explain analyze select * from test where id<=f_test()::int;
QUERY PLAN
---------------------------------------------------------------------------------------------------------
Seq Scan on test (cost=0.00..27138.00 rows=33333 width=21) (actual time=0.143..269.208 rows=2 loops=1)
Filter: (id <= (f_test())::integer)
Rows Removed by Filter: 99998
Total runtime: 269.242 ms
(4 rows)
Time: 269.937 ms
另外一个测试是吧f_test()放到结果集部分, 而不是where条件里面, stable和immutable的差别也很大 :
digoal=> alter function f_test() stable;
ALTER FUNCTION
digoal=> explain analyze select f_test() from test;
QUERY PLAN
--------------------------------------------------------------------------------------------------------------
Seq Scan on test (cost=0.00..26638.00 rows=100000 width=0) (actual time=0.137..268.707 rows=100000 loops=1)
Total runtime: 281.684 ms
(2 rows)
Time: 282.248 ms
改成immutable
digoal=> alter function f_test() immutable;
ALTER FUNCTION
Time: 0.359 ms
digoal=> explain analyze select f_test() from test;
QUERY PLAN
------------------------------------------------------------------------------------------------------------
Seq Scan on test (cost=0.00..1638.00 rows=100000 width=0) (actual time=0.011..23.450 rows=100000 loops=1)
Total runtime: 34.331 ms
(2 rows)
Time: 35.061 ms
3. immutable, 和stable非常类似, 但是immutable是指在任何情况下, 只要参数一致, 结果就一致. 而在事务中参数一致则结果一致可以标记为stable而请你不要把它标记为immutable.
另外的显著的区别是优化器对immutable和stable函数的处理上.
如果函数的参数是常量的情况下 :
immutable函数在优化器生成执行计划时会将函数结果替换函数. 也就是函数不在输出的执行计划中, 取而代之的是一个结果常量.
stable函数则不会如此, 执行计划输出后还是函数.
例如 :
select * from test where id> 1+2;
+对应的操作符函数是immutable的, 所以这条SQL执行计划输出的是 :
select * from test where id>3;
对于用户自己创建的函数也是如此 :
digoal=> create or replace function f_test(i_id int) returns int as $$
declare
begin
return i_id;
end;
$$ language plpgsql immutable;
CREATE FUNCTION
Time: 1.020 ms
immutable 测试 :
digoal=> explain analyze select * from test where id<f_test(50);
QUERY PLAN
--------------------------------------------------------------------------------------------------------------------
Index Scan using idx_test_1 on test (cost=0.00..3.15 rows=50 width=21) (actual time=0.007..0.025 rows=49 loops=1)
Index Cond: (id < 50)
Total runtime: 0.058 ms
(3 rows)
注意这行 :
Index Cond: (id < 50), f_test(50)已经替换成了结果50.
stable 测试 :
digoal=> alter function f_test(int) stable;
ALTER FUNCTION
digoal=> explain analyze select * from test where id<f_test(50);
QUERY PLAN
--------------------------------------------------------------------------------------------------------------------
Index Scan using idx_test_1 on test (cost=0.25..3.40 rows=50 width=21) (actual time=0.019..0.035 rows=49 loops=1)
Index Cond: (id < f_test(50))
Total runtime: 0.066 ms
(3 rows)
注意这行 :
Index Cond: (id < f_test(50)), f_test(50)没有被替换掉.
另外一组测试 :
digoal=> alter function f_test(int) stable;
ALTER FUNCTION
digoal=> explain analyze select * from test where f_test(2)>1;
QUERY PLAN
-------------------------------------------------------------------------------------------------------------------
Result (cost=0.25..1638.25 rows=100000 width=21) (actual time=0.146..50.367 rows=100000 loops=1)
One-Time Filter: (f_test(2) > 1)
-> Seq Scan on test (cost=0.25..1638.25 rows=100000 width=21) (actual time=0.014..20.646 rows=100000 loops=1)
Total runtime: 61.386 ms
(4 rows)
当f_test是stable 时, 比immutable多One-Time Filter: (f_test(2) > 1)
而当immutable, 优化器则将f_test(2)>1这部分直接优化掉了.
digoal=> alter function f_test(int) immutable;
ALTER FUNCTION
digoal=> explain analyze select * from test where f_test(2)>1;
QUERY PLAN
-------------------------------------------------------------------------------------------------------------
Seq Scan on test (cost=0.00..1638.00 rows=100000 width=21) (actual time=0.011..18.801 rows=100000 loops=1)
Total runtime: 29.839 ms
(2 rows)
prepare statement 注意
prepare statement请参考 :
[《执行计划选择算法 与 绑定变量 - PostgreSQL prepared statement: SPI_prepare, prepare | execute COMMAND, PL/pgsql STYLE: custom & generic plan cache》](../201212/20121224_01.md) |
这里需要注意的是immutable函数, 如果你的函数实际上不是immutable的. 但是你把它标记为immutable了, 可能有意想不到的结果 :
digoal=> create or replace function immutable_random() returns numeric as $$
declare
begin
return random();
end;
$$ language plpgsql immutable;
CREATE FUNCTION
创建一个prepare statement.
digoal=> prepare p_test(int) as select $1,immutable_random();
PREPARE
Time: 0.473 ms
执行这个prepared statement :
digoal=> execute p_test(1);
?column? | immutable_random
----------+-------------------
1 | 0.277766926214099
(1 row)
Time: 0.398 ms
digoal=> execute p_test(1);
?column? | immutable_random
----------+-------------------
1 | 0.974089733790606
(1 row)
Time: 0.209 ms
digoal=> execute p_test(1);
?column? | immutable_random
----------+-------------------
1 | 0.800415104720742
(1 row)
Time: 0.212 ms
digoal=>
digoal=> execute p_test(1);
?column? | immutable_random
----------+------------------
1 | 0.41237005777657
(1 row)
Time: 0.290 ms
digoal=> execute p_test(1);
?column? | immutable_random
----------+--------------------
1 | 0.0541226323693991
(1 row)
Time: 0.211 ms
第六次开始使用generic_plan, 而immutable function在plan时将被结果常量替换.
digoal=> execute p_test(1);
?column? | immutable_random
----------+-------------------
1 | 0.431490630842745
(1 row)
Time: 0.233 ms
以后再执行这个prepare statement, immutable_random()部分都将得到同样的结果.
digoal=> execute p_test(1);
?column? | immutable_random
----------+-------------------
1 | 0.431490630842745
(1 row)
Time: 0.165 ms
digoal=> execute p_test(2);
?column? | immutable_random
----------+-------------------
2 | 0.431490630842745
(1 row)
Time: 0.273 ms
digoal=> execute p_test(3);
?column? | immutable_random
----------+-------------------
3 | 0.431490630842745
(1 row)
Time: 0.149 ms
而把immutable_random()改成volatile或者stable后, immutable_random()都将产生不同的结果, 不会发生以上情况.
因为他们在plan时函数不会被结果替换.
所以在prepare statement中使用immutable函数, 需要特别注意这个函数到底是不是真的是immutable的.
MVCC 注意
这里要注意的是volatile, stable, immutable这几种函数, 对数据的修改的可见性分两种情况.
volatile , 调用该函数的SQL对数据的修改, 可见.
stable, immutable , 调用该函数的SQL对数据的修改, 不可见.
STABLE and IMMUTABLE functions use a snapshot established as of the start of the calling query,
whereas VOLATILE functions obtain a fresh snapshot at the start of each query they execute.
例如 :
创建测试表 :
digoal=> create table test(id int,info text);
CREATE TABLE
Time: 50.356 ms
digoal=> insert into test select 1,random()::text from generate_series(1,1000);
INSERT 0 1000
Time: 5.027 ms
创建修改函数, 这个函数将在另一个函数中调用, 用来修改ID。
因为另一个函数是用perform f_mod(int)来修改数据, 所以另外一个函数可以改成volatile, stable, immutable任意.
digoal=> create or replace function f_mod(i_id int) returns void as $$
declare
begin
update test set id=i_id+1 where id=i_id;
end;
$$ language plpgsql volatile;
测试稳定性的函数 :
digoal=> create or replace function f_test(i_id int) returns bigint as $$
declare
result int8;
begin
perform f_mod(i_id);
select count(*) into result from test where id=i_id;
return result;
end;
$$ language plpgsql volatile;
当稳定性=volatile时, 修改可以被select count(*) into result from test where id=i_id; 看到 :
所以更新后结果为0 :
digoal=> select f_test(1);
f_test
--------
0
(1 row)
改成stable, 它看到的是SQL开始是的snapshot, 所以对修改不可见, 结果还是1000 :
digoal=> alter function f_test(int) stable;
ALTER FUNCTION
digoal=> select f_test(2);
f_test
--------
1000
(1 row)
改成immutable, 它看到的是SQL开始是的snapshot, 所以对修改不可见, 结果还是1000 :
digoal=> alter function f_test(int) immutable;
ALTER FUNCTION
digoal=> select f_test(3);
f_test
--------
1000
(1 row)
还有一种情况是如果修改是来自函数体外部的修改, 那是否可见?
digoal=> create or replace function f_test(i_id int) returns bigint as $$
declare
result int8;
begin
select count(*) into result from test where id=i_id;
return result;
end;
$$ language plpgsql volatile;
CREATE FUNCTION
看不到with的修改 :
digoal=> alter function f_test(int) immutable;
ALTER FUNCTION
digoal=> with t1 as (
digoal(> update test set id=id+1 where id=4
digoal(> )
digoal-> select f_test(4);
f_test
--------
1000
(1 row)
看不到with的修改 :
digoal=> alter function f_test(int) stable;
ALTER FUNCTION
digoal=> with t1 as (
update test set id=id+1 where id=5
)
select f_test(5);
f_test
--------
1000
(1 row)
看不到with的修改 :
digoal=> alter function f_test(int) volatile;
ALTER FUNCTION
digoal=> with t1 as (
update test set id=id+1 where id=6
)
select f_test(6);
f_test
--------
1000
(1 row)
在事务中时, 都能看到本事务在前面做的修改 :
digoal=> alter function f_test(int) immutable;
ALTER FUNCTION
digoal=> begin;
BEGIN
digoal=> update test set id=id+1 where id=13;
UPDATE 1000
digoal=> select f_test(13);
f_test
--------
0
(1 row)
digoal=> select f_test(14);
f_test
--------
1000
(1 row)
digoal=> end;
COMMIT
volatile, stable测试略, 同上。
其他
1. 查看函数的稳定性 :
digoal=> select proname,proargtypes,provolatile from pg_proc where proname='f_test';
proname | proargtypes | provolatile
---------+-------------+-------------
f_test | | i
f_test | 23 | i
(2 rows)
i表示immutable, s表示stable, v表示volatile.
2. 请按实际情况严格来标记一个函数的稳定性.
3. stable函数和immutable函数不能直接调用UPDATE这种修改数据库的SQL语句. 但是通过perform volatile function或者select volatile function还是会修改到数据, 因为PostgreSQL不会有更深层次的检查.
参考
1. http://www.postgresql.org/docs/9.2/static/spi-spi-prepare.html
2. http://www.postgresql.org/docs/9.2/static/plpgsql-implementation.html
3. http://www.postgresql.org/docs/9.2/static/xfunc-volatility.html
4. 《函数稳定性讲解 - Thinking PostgreSQL Function’s Volatility Categories》
5. 《函数稳定性讲解 - 函数索引思考, pay attention to function index used in PostgreSQL》
6. http://www.postgresql.org/docs/9.2/static/monitoring-stats.html
7. [《执行计划选择算法 与 绑定变量 - PostgreSQL prepared statement: SPI_prepare, prepare | execute COMMAND, PL/pgsql STYLE: custom & generic plan cache》](../201212/20121224_01.md) |
8. http://www.postgresql.org/docs/9.2/static/sql-createfunction.html